English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Scenario-based multi-hazard risk assessment from existing single-hazard fragility models. An application to residential building portfolios subjected to consecutive hazards

Gomez- Zapata, J. C., Pittore, M., Brinckmann, N., Lizarazo, J. M., Medina, S., Tarque, N., Cotton, F. (2023): Scenario-based multi-hazard risk assessment from existing single-hazard fragility models. An application to residential building portfolios subjected to consecutive hazards, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-4553

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Gomez- Zapata, Juan Camilo1, 2, Author              
Pittore, Massimiliano1, Author
Brinckmann, Nils1, 3, Author              
Lizarazo, Juan Manuel1, Author
Medina, Sergio1, Author
Tarque, Nicola1, Author
Cotton, Fabrice1, 2, Author              
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              
22.6 Seismic Hazard and Risk Dynamics, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146032              
35.2 eScience Centre, 5.0 Geoinformation, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_44023              

Content

show
hide
Free keywords: -
 Abstract: Remarkably, the existing multi-hazard risk models that assess the physical vulnerability of exposed assets lack validation and do not offer the disaggregated effects per hazard scenario. We track that shortcoming while relying on the assumption that locally calibrated single-hazard vulnerability models available in the literature can be reused for multi-hazard risk assessment for building portfolios. This is done through a holistic method that probabilistically harmonises such single-hazard fragility models and allows us to assess the differential and cumulated damage that are expected from residential building stocks affected by cascading hazards. This is a modular approach that is composed of: (1) exposure models that classify the buildings into individual sets of classes for each hazard; (2) their spatial aggregation onto optimal geographical units whose variable resolution is compatible with the variability of the hazard intensities; (3) the probabilistic compatibilities between such sets of building classes and the damage states within their fragility models; (4) the use of state-dependent fragility functions for the second hazard. We test this methodology on the residential building stock of Lima (Peru), a coastal mega-city. Damage distributions and direct economic loss estimates are calculated for six independent mega-thrust-earthquake scenarios (main-shock) ranging from Mw 8.5 to 9.0. Thereby, the resultant distribution of damage states after the first earthquake is probabilistically converted to the reference frame of the tsunami and is later used to assess the cumulative damage using state-dependent fragility functions. This setting allows disaggregating the direct economic losses of each individual hazard to the entire cascading sequence.

Details

show
hide
Language(s): eng - English
 Dates: 2023-07-112023-07-11
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-4553
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -