English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Cable reverberations during wireline distributed acoustic sensing measurements: their nature and methods for elimination

Martuganova, E., Stiller, M., Henninges, J., Krawczyk, C., Bauer, K. (2021): Cable reverberations during wireline distributed acoustic sensing measurements: their nature and methods for elimination. - Geophysical Prospecting, 69, 5, 1034-1054.
https://doi.org/10.1111/1365-2478.13090

Item is

Files

show Files
hide Files
:
5006336.pdf (Publisher version), 27MB
Name:
5006336.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Martuganova, Evgeniia1, Author              
Stiller, Manfred1, Author              
Henninges, J.2, Author              
Krawczyk, C.M.1, Author              
Bauer, Klaus1, Author              
Affiliations:
12.2 Geophysical Imaging of the Subsurface, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_66027              
24.8 Geoenergy, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146039              

Content

show
hide
Free keywords: Deal Wiley
 Abstract: The application of distributed acoustic sensing in borehole measurements allows for the use of fibre optic cables to measure strain. This is more efficient in terms of time and costs compared with the deploying of conventional borehole seismometers. Nevertheless, one known drawback for temporary deployment is represented by the freely hanging wireline cable slapping and ringing inside the casing, which introduces additional coherent coupling noise to the data. The present study proposes an explanation for the mechanism of noise generation and draws an analogy with similar wave propagation processes and phenomena, such as ghost waves in marine seismics. This observation allows to derive a ringing noise filter function, to study its behaviour and to consider known effects of the gauge length filter. After examining existing methods aimed at eliminating ringing noise and results of their application, we propose a two-step approach: (1) developing a denoising method based on a matching pursuit decomposition with Gabor atoms and (2) subtracting the noise model for imaging improvement. The matching pursuit method focuses on decomposing the original input signal into a weighted sum of Gabor functions. Analysing Gabor atoms properties for frequency, amplitude and position in time provides the opportunity to distinguish parts of the original signal denoting noise caused by the vibrating cable. The matching pursuit decomposition applied to the distributed acoustic sensing-vertical seismic profiling data at the geothermal test site Groß Schönebeck provides a versatile processing instrument for noise suppression.

Details

show
hide
Language(s):
 Dates: 20212021
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1111/1365-2478.13090
GFZPOF: p4 T8 Georesources
OATYPE: Hybrid - DEAL Wiley
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Geophysical Prospecting
Source Genre: Journal, SCI, Scopus
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 69 (5) Sequence Number: - Start / End Page: 1034 - 1054 Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals181
Publisher: Wiley