English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Effects of urban structures on spatial and temporal flood distribution

Shlewet, M., Kästner, K., Caviedes-Voullième, D., Hinz, C. (2023): Effects of urban structures on spatial and temporal flood distribution, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-4691

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Shlewet, Marlin1, Author
Kästner, Karl1, Author
Caviedes-Voullième, Daniel1, Author
Hinz, Christoph1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: It remains a challenge to accurately model the runoff behavior in urban areas with a complex topography. The question to be addressed is how varying the urban spatial configurations can quantitatively influence the overland flow response in relation to the hydrodynamic variables. We use a 2D shallow water model to indicate the influence of changing spatial urban factors (such as the orientation of streets and buildings, and adding sidewalks) in small idealized (synthetic) urban catchments with a size of 267.5m*267.5m during a single pluvial flood event. We differentiate between: i) the two-way main street with of 14-m width with sidewalks, and ii) side streets of 10m width. We then define novel spatially integrated indicators over the domain to analyze quantitatively runoff variables in correlation with the urban features. Additionally, local hotspot flood maps were created to assess risk. The modelling results showed that, with respect to the flow velocities in small-scale urban catchments, the main street layout is the dominant urban factor, followed by the side street widths, which were decisively determined by the geometry of the sidewalks. The comparison with real flood risk thresholds shows that the lower part of the main road is the most sensitive to flood risk in the domain. Spatially integrated indicators of the flow variables are showing low sensitivity to the spatial urban features. Our findings offer a new important perspective on the development of urban flood risk assessment, and provide a better understanding of the spatiotemporal rainfall-runoff generation in a small urban catchment.

Details

show
hide
Language(s): eng - English
 Dates: 2023-07-112023-07-11
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-4691
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -