English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Reduction of PCE and TCE by magnetite revisited

Culpepper, J. D., Scherer, M., Robinson, T. C., Neumann, A., Cwiertny, D., Latta, D. E. (2018): Reduction of PCE and TCE by magnetite revisited. - Environmental Sciences: Processes and Impacts, 20, 10, 1340-1349.
https://doi.org/10.1039/C8EM00286J

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Culpepper, Johnathan D.1, Author
Scherer, Michelle M.1, Author
Robinson, Thomas C.1, Author
Neumann, Anke2, Author              
Cwiertny, David1, Author
Latta, Drew E.1, Author
Affiliations:
1External Organizations, ou_persistent22              
20 Pre-GFZ, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146023              

Content

show
hide
Free keywords: -
 Abstract: Here we revisit whether the common mixed-valent Fe mineral, magnetite, is a viable reductant for the abiotic natural attenuation of perchloroethylene (PCE) and trichloroethylene (TCE) in anoxic groundwater plumes. We measured PCE and TCE reduction by stoichiometric magnetite as a function of pH and Fe(II) concentration. In the absence of added Fe(II), stoichiometric magnetite does not reduce PCE and TCE over a three month period under anoxic conditions. When Fe(II) is added to magnetite suspensions, PCE and TCE are reduced under Fe(II) and pH conditions that appear to be controlled by the solubility of ferrous hydroxide, Fe(OH)2(s). Reduction rates are slow with only 1 to 30% carbon products (primarily acetylene) accumulating over several months. We conducted a similar set of experiments with Fe(OH)2(s) alone and found that, compared to in the presence of magnetite, Fe(OH)2(s) reduces PCE and TCE only at Fe(II) concentrations that are too high (≥13 mM, 726 mg L−1) to be representative of natural aquifer conditions. Our results suggest that magnetite present in aquifer sediments alone is unlikely to reduce PCE and TCE sufficiently fast to contribute to natural attenuation of PCE and TCE. The lack of compelling evidence for PCE and TCE reduction by magnetite raises important questions regarding the current application of using magnetic susceptibility as a potential indicator for abiotic natural attenuation. Dynamic conditions and high Fe(II) concentrations that favor active precipitation of minerals, such as Fe(OH)2(s) in the presence of magnetite (or other Fe minerals), however, may lead to PCE and TCE reduction that could help attenuate PCE and TCE plumes.

Details

show
hide
Language(s):
 Dates: 20182018
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1039/C8EM00286J
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Environmental Sciences: Processes and Impacts
Source Genre: Journal, SCI, Scopus
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 20 (10) Sequence Number: - Start / End Page: 1340 - 1349 Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/190430
Publisher: Royal Society of Chemistry (RSC)