English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Biocalcification in porcelaneous foraminifera

Dubicka, Z., Tyszka, J., Pałczyńska, A., Höhne, M., Bijma, J., Jense, M., Klerks, N., Bickmeyer, U. (2024): Biocalcification in porcelaneous foraminifera. - eLife, 13, RP91568.
https://doi.org/10.7554/eLife.91568

Item is

Files

show Files
hide Files
:
5029040.pdf (Publisher version), 13MB
Name:
5029040.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Dubicka, Zofia1, Author              
Tyszka, Jarosław2, Author
Pałczyńska, Agnieszka2, Author
Höhne, Michelle2, Author
Bijma, Jelle2, Author
Jense, Max2, Author
Klerks, Nienke2, Author
Bickmeyer, Ulf2, Author
Affiliations:
13.5 Interface Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_754888              
2External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Living organisms control the formation of mineral skeletons and other structures through biomineralization. Major phylogenetic groups usually consistently follow a single biomineralization pathway. Foraminifera, which are very efficient marine calcifiers, making a substantial contribution to global carbonate production and global carbon sequestration, are regarded as an exception. This phylum has been commonly thought to follow two contrasting models of either in situ ‘mineralization of extracellular matrix’ attributed to hyaline rotaliid shells, or ‘mineralization within intracellular vesicles’ attributed to porcelaneous miliolid shells. Our previous results on rotaliids along with those on miliolids in this paper question such a wide divergence of biomineralization pathways within the same phylum of Foraminifera. We have found under a high-resolution scanning electron microscopy (SEM) that precipitation of high-Mg calcitic mesocrystals in porcelaneous shells takes place in situ and form a dense, chaotic meshwork of needle-like crystallites. We have not observed calcified needles that already precipitated in the transported vesicles, what challenges the previous model of miliolid mineralization. Hence, Foraminifera probably utilize less divergent calcification pathways, following the recently discovered biomineralization principles. Mesocrystalline chamber walls in both models are therefore most likely created by intravesicular accumulation of pre-formed liquid amorphous mineral phase deposited and crystallized within the extracellular organic matrix enclosed in a biologically controlled privileged space by active pseudopodial structures. Both calcification pathways evolved independently in the Paleozoic and are well conserved in two clades that represent different chamber formation modes.

Details

show
hide
Language(s):
 Dates: 2024-08-162024
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.7554/eLife.91568
GFZPOF: p4 T5 Future Landscapes
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: eLife
Source Genre: Journal, SCI, Scopus, oa
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 13 Sequence Number: RP91568 Start / End Page: - Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/20241120
Publisher: eLife Sciences Publications