Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Plant growth monitoring and potential drought risk assessment by means of Earth observation data

Berger [Richter], K., Rischbeck, P., Eitzinger, J., Schneider, W., Suppan, F., Weihs, P. (2008): Plant growth monitoring and potential drought risk assessment by means of Earth observation data. - International Journal of Remote Sensing, 29, 4943-4960.
https://doi.org/10.1080/01431160802036268

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Berger [Richter], Katja1, Autor              
Rischbeck, P.2, Autor
Eitzinger, J.2, Autor
Schneider, W.2, Autor
Suppan, F.2, Autor
Weihs, P.2, Autor
Affiliations:
10 Pre-GFZ, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146023              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The potential of hyperspectral imagery for the determination of drought risk zones, responsible for heterogeneous plant growth due to different soil compositions, was assessed at the field scale. The research was carried out in the Marchfeld region, an agricultural, flat area east of Vienna, Austria, during June 2005 by means of an airborne imaging spectrometer (HyMap). The inversion of a radiative transfer model by using a look‐up‐table (LUT) approach was performed to retrieve canopy parameters, indicators of plant growth, such as leaf area index (LAI), chlorophyll content and a soil reflectance factor (ALFA). To quantify ALFA with respect to its relationship to soil surface water content, the soil reflectance was measured at different levels of known soil water conditions. Finally, a cluster analysis was performed using the parameters estimated from the model inversion to explain plant growth variability, quantified by means of measured yield. The results were compared with a simple Normalized Differenced Vegetation Index (NDVI) approach to evaluate the contribution of hyperspectral data to vegetation monitoring. Areas characterizing different levels of drought risk could be determined by both methods with a similar performance.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2010-12-042008
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1080/01431160802036268
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: International Journal of Remote Sensing
Genre der Quelle: Zeitschrift, SCI, Scopus
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 29 Artikelnummer: - Start- / Endseite: 4943 - 4960 Identifikator: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals226