English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Experimental & Computational Fluid Dynamics Study of the Suitability of Different Solid Feed Pellets for Aquaculture Systems

Papacek, S., Petera, K., Cisar, P., Stejskal, V., Saberioon, M. (2020): Experimental & Computational Fluid Dynamics Study of the Suitability of Different Solid Feed Pellets for Aquaculture Systems. - Applied Sciences, 10, 19, 6954.
https://doi.org/10.3390/app10196954

Item is

Files

show Files
hide Files
:
5003424.pdf (Publisher version), 3MB
Name:
5003424.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Papacek, Stepan1, Author
Petera, Karel1, Author
Cisar, Petr1, Author
Stejskal, Vlastimil1, Author
Saberioon, Mohammadmehdi2, Author              
Affiliations:
1External Organizations, ou_persistent22              
21.4 Remote Sensing, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146028              

Content

show
hide
Free keywords: -
 Abstract: Fish feed delivery is one of the challenges which fish farmers encounter daily. The main aim of the feeding process is to ensure that every fish is provided with sufficient feed to maintain desired growth rates. The properties of fish feed pellet, such as water stability, degree of swelling or floating time, are critical traits impacting feed delivery. Some considerable effort is currently being made with regard to the replacement of fish meal and fish oil with other sustainable alternative raw materials (i.e., plant or insect-based) with different properties. The main aim of this study is to investigate the motion and residence time distribution (RTD) of two types of solid feed pellets with different properties in a cylindrical fish tank. After experimental identification of material and geometrical properties of both types of pellets, a detailed 3D computational fluid dynamics (CFD) study for each type of pellets is performed. The mean residence time of pellets injected at the surface of the fish tank can differ by up to 75% depending on the position of the injection. The smallest residence time is when the position is located at the center of the liquid surface (17 s); the largest is near the edge of the tank (75 s). The maximum difference between the two studied types of pellets is 25% and it increases with positions closer to the center of the tank. The maximum difference for positions along the perimeter at 3/4 tank radius is 8%; the largest residence times are observed at the opposite side of the water inlet. Based on this study, we argue that the suitability of different solid feed pellets for aquaculture systems with specific fish can be determined, and eventually the pellet composition (formula) as well as the injection position can be optimized.

Details

show
hide
Language(s): eng - English
 Dates: 2020-09-032020-09-302020-10-042020
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.3390/app10196954
GFZPOF: p3 PT1 Global Processes
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Applied Sciences
Source Genre: Journal, SCI, Scopus, oa, Scopus bis 2022
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 10 (19) Sequence Number: 6954 Start / End Page: - Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/202010071
Publisher: MDPI