English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Projections of landscape evolution on a 10,000 year timescale with assessment and partitioning of uncertainty sources

Barnhart, K. R., Tucker, G. E., Doty, S. G., Glade, R. C., Shobe, C., Rossi, M. W., Hill, M. C. (2020): Projections of landscape evolution on a 10,000 year timescale with assessment and partitioning of uncertainty sources. - Journal of Geophysical Research: Earth Surface, 125, 12, e2020JF005795.
https://doi.org/10.1029/2020JF005795

Item is

Files

show Files
hide Files
:
5004209.pdf (Publisher version), 4MB
Name:
5004209.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Barnhart , Katherine R.1, Author
Tucker , Gregory E.1, Author
Doty , Sandra G.1, Author
Glade , Rachel C.1, Author
Shobe, Charles2, Author              
Rossi , Matthew W.1, Author
Hill , Mary C.1, Author
Affiliations:
1External Organizations, ou_persistent22              
24.7 Earth Surface Process Modelling, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_1729888              

Content

show
hide
Free keywords: -
 Abstract: Long‐term erosion can threaten infrastructure and buried waste, with consequences for management of natural systems. We develop erosion projections over 10 ky for a 5 km2 watershed in New York, USA. Because there is no single landscape evolution model appropriate for the study site we assess uncertainty in projections associated with model structure by considering a set of alternative models, each with a slightly different governing equation. In addition to model structure uncertainty we consider the following uncertainty sources: selection of a final model set; each model's parameter values estimated through calibration; simulation boundary conditions such as the future incision of downstream rivers and future climate; and initial conditions (e.g., site topography which may undergo near‐term anthropogenic modification). We use an Analysis‐of‐Variance approach to assess and partition uncertainty in projected erosion into the variance attributable to each source. Our results suggest 1/6 of the watershed will experience erosion exceeding 5 m in the next 10 ky. Uncertainty in projected erosion increases with time and the projection uncertainty attributable to each source manifests in a distinct spatial pattern. Model structure uncertainty is relatively low, which reflects our ability to constrain parameter values and reduce the model set through calibration to the recent geologic past. Beyond site‐specific findings, our work demonstrates what information prediction‐under‐uncertainty studies can provide about geomorphic systems. Our results represent the first application of a comprehensive multi‐model uncertainty analysis for long‐term erosion forecasting.

Details

show
hide
Language(s):
 Dates: 2020-11-272020
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1029/2020JF005795
GFZPOF: p3 PT3 Earth Surface and Climate Interactions
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Geophysical Research: Earth Surface
Source Genre: Journal, SCI, Scopus
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 125 (12) Sequence Number: e2020JF005795 Start / End Page: - Identifier: ISSN: 2169-9003
Other: Wiley
Other: American Geophysical Union (AGU)
Other: 2169-9011
CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/jgr_earth_surface
Publisher: American Geophysical Union (AGU)