English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  What is behind the heterogeneities in the migration patterns of deep LFE activity in Nankai?

Higaki, A., Ariyoshi, K., Yamamoto, Y. (2023): What is behind the heterogeneities in the migration patterns of deep LFE activity in Nankai?, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-3754

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Higaki, Anca1, Author
Ariyoshi, Keisuke1, Author
Yamamoto, Yojiro1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: LFE’s regularly occur as dense groups or bursts which propagate along the subduction zone, within a belt like structure at 20-40 km deep. Deep-learning algorithms can model complex systems using large temporal and spatial datasets. We test two hypotheses that can explain what mechanism controls the migration of bursts. First, we assume that small patches of ductile material are responsible for the cascade propagation of bursts via stress diffusion. Thus, the variations in propagation fronts are controlled by structural heterogeneities along the path. Thus, we can obtain a map of their geographical location. The second model implies fluid diffusion propagation, which is described as parabolic propagation. Also, migration patterns of fluid induced micro-earthquake swarms are related to how close from failure a region is. Thus, the propagation is controlled by the accumulated and released stress within each cycle, not by the location of the heterogeneities. If the structural heterogeneities are responsible for the variations in the migration of burst, the heterogeneities within the tremor belt are corresponding to a consistent increase/decrease in the rupture velocity or diffusivity. For stress/fluid diffusion-mediated transport, such heterogeneities do not control the propagation pattern, but rather the stress does. If the area is under high stress, the migration shows accelerating front, while the front is mostly diffusive if the stress state is low. Using a PINN algorithm, we test which model best describes the migration of LFE swarms to contribute to the understanding of the heterogeneities across Nankai subduction zone for producing better forecasting models.

Details

show
hide
Language(s): eng - English
 Dates: 2023-07-112023-07-11
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-3754
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -