English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Estimating Antarctic geothermal heat flux using gravity inversion

Vaughan, A. P. M., Kusznir, N. J., Ferraccioli, F., Leat, P. T., Jordan, T. A. R. M., Purucker, M. E., Golynsky, A. V., Rogozhina, I. (2013): Estimating Antarctic geothermal heat flux using gravity inversion, (Geophysical Research Abstracts, Vol. 15, EGU2013-8245), General Assembly European Geosciences Union (Vienna, Austria 2013).

Item is

Basic

show hide
Item Permalink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_247235 Version Permalink: -
Genre: Conference Paper

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Vaughan, A. P. M.1, Author
Kusznir, N. J.1, Author
Ferraccioli, F.1, Author
Leat, P. T.1, Author
Jordan, T. A. R. M.1, Author
Purucker, M. E.1, Author
Golynsky, A. V.1, Author
Rogozhina, Irina2, Author              
Affiliations:
1External Organizations, ou_persistent22              
21.3 Earth System Modelling, 1.0 Geodesy and Remote Sensing, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146027              

Content

show
hide
Free keywords: 7-12 April 2013. Poster
 DDC: 550 - Earth sciences
 Abstract: Geothermal heat flux (GHF) in Antarctica is very poorly known. We have determined (Vaughan et al. 2012) top basement heat-flow for Antarctica and adjacent rifted continental margins using gravity inversion mapping of crustal thickness and continental lithosphere thinning (Chappell & Kusznir 2008). Continental lithosphere thinning and post-breakup residual thicknesses of continental crust determined from gravity inversion have been used to predict the preservation of continental crustal radiogenic heat productivity and the transient lithosphere heat-flow contribution within thermally equilibrating rifted continental and oceanic lithosphere. The sensitivity of present-day Antarctic top basement heat-flow to initial continental radiogenic heat productivity, continental rift and margin breakup age has been examined. Knowing GHF distribution for East Antarctica and the Gamburtsev Subglacial Mountains (GSM) region in particular is critical because: 1) The GSM likely acted as key nucleation point for the East Antarctic Ice Sheet (EAIS); 2) the region may contain the oldest ice of the EAIS - a prime target for future ice core drilling; 3) GHF is important to understand proposed ice accretion at the base of the EAIS in the GSM and its links to sub-ice hydrology (Bell et al. 2011). An integrated multi-dataset-based GHF model for East Antarctica is planned that will resolve the wide range of estimates previously published using single datasets. The new map and existing GHF distribution estimates available for Antarctica will be evaluated using direct ice temperature measurements obtained from deep ice cores, estimates of GHF derived from subglacial lakes, and a thermodynamic ice-sheet model of the Antarctic Ice Sheet driven by past climate reconstructions and each of analysed heat flow maps, as has recently been done for the Greenland region (Rogozhina et al. 2012). References Bell, R.E., Ferraccioli, F., Creyts, T.T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N., Jordan, T., Rose, K., Studinger, M. & Wolovick, M. 2011. Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science, 331 (6024), 1592–1595. Chappell, A.R. & Kusznir, N.J. 2008. Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction. Geophysical Journal International, 174 (1), 1–13. Golynsky, A.V. & Golynsky, D.A. 2009. Rifts in the tectonic structure of East Antarctica (in Russian). Russian Earth Science Research in Antarctica, 2, 132–162. Rogozhina, I., Hagedoorn, J.M., Martinec, Z., Fleming, K., Soucek, O., Greve, R. & Thomas, M. 2012. Effects of uncertainties in the geothermal heat flux distribution on the Greenland Ice Sheet: An assessment of existing heat flow models. Journal of Geophysical Research-Earth Surface, 117 (F2), F02025. Vaughan, A.P.M., Kusznir, N.J., Ferraccioli, F. & Jordan, T.A.R.M. 2012. Regional heat-[U+FB02]ow prediction for Antarctica using gravity inversion mapping of crustal thickness and lithosphere thinning. Geophysical Research Abstracts, 14, EGU2012–8095.

Details

show
hide
Language(s):
 Dates: 2013
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 20760
GFZPOF: PT1 Planet Earth: Global Processes and Change
 Degree: -

Event

show
hide
Title: General Assembly European Geosciences Union (Vienna, Austria 2013)
Place of Event: -
Start-/End Date: -

Legal Case

show

Project information

show

Source 1

show
hide
Title: Geophysical Research Abstracts, Vol. 15, EGU2013-8245
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -