English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The wide-angle seismic image of a complex rifted margin, offshore North Namibia: Implications for the tectonics of continental breakup

Planert, L., Behrmann, J., Jokat, W., Fromm, T., Ryberg, T., Weber, M., Haberland, C. (2017): The wide-angle seismic image of a complex rifted margin, offshore North Namibia: Implications for the tectonics of continental breakup. - Tectonophysics, 716, 130-148.
https://doi.org/10.1016/j.tecto.2016.06.024

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Planert, Lars1, Author
Behrmann, Jan1, Author
Jokat, Wilfried1, Author
Fromm, Tanja1, Author
Ryberg, T.2, Author              
Weber, Michael2, Author              
Haberland, C.1, Author              
Publikationen aller GIPP-unterstützten Projekte, Deutsches GeoForschungsZentrum, Author              
Affiliations:
1External Organizations, ou_persistent22              
22.2 Geophysical Deep Sounding, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_66027              

Content

show
hide
Free keywords: -
 Abstract: Voluminous magmatism during the South Atlantic opening has been considered as a classical example for plume related continental breakup. We present a study of the crustal structure around Walvis Ridge, near the intersection with the African margin. Two wide-angle seismic profiles were acquired. One is oriented NNW–SSE, following the continent–ocean transition and crossing Walvis Ridge. A second amphibious profile runs NW–SE from the Angola Basin into continental Namibia. At the continent–ocean boundary (COB) the mafic crust beneath Walvis Ridge is up to 33 km thick, with a pronounced high-velocity lower crustal body. Towards the south there is a smooth transition to 20–25 km thick crust underlying the COB in the Walvis Basin, with a similar velocity structure, indicating a gabbroic lower crust with associated cumulates at the base. The northern boundary of Walvis Ridge towards the Angola Basin shows a sudden change to oceanic crust only 4–6 km thick, coincident with the projection of the Florianopolis Fracture Zone, one of the most prominent tectonic features of the South Atlantic ocean basin. In the amphibious profile the COB is defined by a sharp transition from oceanic to rifted continental crust, with a magmatic overprint landward of the intersection of Walvis Ridge with the Namibian margin. The continental crust beneath the Congo Craton is 40 km thick, shoaling to 35 km further SE. The velocity models show that massive high-velocity gabbroic intrusives are restricted to a narrow zone directly underneath Walvis Ridge and the COB in the south. This distribution of rift-related magmatism is not easily reconciled with models of continental breakup following the establishment of a large, axially symmetric plume in the Earth's mantle. Rift-related lithospheric stretching and associated transform faulting play an overriding role in locating magmatism, dividing the margin in a magma-dominated southern and an essentially amagmatic northern segment.

Details

show
hide
Language(s): eng - English
 Dates: 2017
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1016/j.tecto.2016.06.024
GFZPOF: p3 PT2 Plate Boundary Systems
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Tectonophysics
Source Genre: Journal, SCI, Scopus
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 716 Sequence Number: - Start / End Page: 130 - 148 Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals470