English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A daily wetness index from satellite gravity for near-real time global monitoring of hydrological extremes

Gouweleeuw, B., Kvas, A., Gruber, C., Mayer-Gürr, T., Flechtner, F., Hasan, M., Güntner, A. (2017): A daily wetness index from satellite gravity for near-real time global monitoring of hydrological extremes, (Geophysical Research Abstracts Vol. 19, EGU2017-14678), General Assembly European Geosciences Union (Vienna 2017).

Item is

Files

show Files

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Gouweleeuw, Ben1, Author              
Kvas, Andreas2, Author
Gruber, C.3, Author              
Mayer-Gürr, Torsten2, Author
Flechtner, Frank3, Author              
Hasan, Mehedi1, Author              
Güntner, A.1, Author              
Affiliations:
15.4 Hydrology, 5.0 Geoarchives, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146048              
2External Organizations, ou_persistent22              
31.2 Global Geomonitoring and Gravity Field, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146026              

Content

show
hide
Free keywords: -
 Abstract: Since April 2002, the Gravity Recovery and Climate Experiment (GRACE) satellite mission has been churning out water storage anomaly data, which has been shown to be a unique descriptor of large-scale hydrological extreme events. Nonetheless, efforts to assess the comprehensive information from GRACE on total water storage variations for near-real time flood or drought monitoring have been limited so far, primarily due to its coarse temporal (weekly to monthly) and spatial (> 150.000 km2) resolution and the latency of standard products of about 2 months,. Pending the status of the aging GRACE satellite mission, the Horizon 2020 funded EGSIEM (European Gravity Service for Improved Emergency Management) project is scheduled to launch a 6 month duration nearreal time test run of GRACE gravity field data from April 2017 onward, which will provide daily gridded data with a latency of 5 days. This fast availability allows the monitoring of total water storage variations related to hydrological extreme events, as they occur, as opposed to a ’confirmation after occurrence’, which is the current situation. This contribution proposes a global GRACE-derived gridded wetness indicator, expressed as a gravity anomaly in dimensionless units of standard deviation. Results of a retrospective evaluation (April 2002-December 2015) of the proposed index against databases of hydrological extremes will be presented. It is shown that signals for large extreme floods related to heavy/monsoonal rainfall are picked up really well in the Southern Hemisphere and lower Northern Hemisphere (Africa, S-America, Australia, S-Asia), while extreme floods in the Northern Hemisphere (Russia) related to snow melt are often not. The latter is possibly related to a lack of mass movement over longer distances, e.g. when melt water is not drained due to river ice blocking.

Details

show
hide
Language(s): eng - English
 Dates: 2017
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: GFZPOF: p3 PT1 Global Processes
 Degree: -

Event

show
hide
Title: General Assembly European Geosciences Union
Place of Event: Vienna
Start-/End Date: 2017-04-23 - 2017-04-28

Legal Case

show

Project information

show

Source 1

show
hide
Title: Geophysical Research Abstracts Vol. 19, EGU2017-14678
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -