Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Seasonal effects of non-tidal oceanic mass shifts in observations with superconducting gravimeters

Kroner, C., Thomas, M., Dobslaw, H., Abe, M., Weise, A. (2009): Seasonal effects of non-tidal oceanic mass shifts in observations with superconducting gravimeters. - Journal of Geodynamics, 48, 3-5, 354-359.
https://doi.org/10.1016/j.jog.2009.09.009

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Kroner, C.1, Autor
Thomas, Maik2, Autor              
Dobslaw, Henryk2, Autor              
Abe, M.3, Autor              
Weise, A.1, Autor
1.2 Global Geomonitoring and Gravity Field, 1.0 Geodesy and Remote Sensing, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, Autor              
Gravity Field and Gravimetry -2009, Geoengineering Centres, GFZ Publication Database, Deutsches GeoForschungsZentrum, Autor              
1.3 Earth System Modelling, 1.0 Geodesy and Remote Sensing, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, Autor              
Affiliations:
1External Organizations, ou_persistent22              
2Deutsches GeoForschungsZentrum, ou_persistent13              
31.2 Global Geomonitoring and Gravity Field, 1.0 Geodesy and Remote Sensing, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146026              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Superconducting gravimetry; Ocean models; GRACE validation; Long-periodic gravity variations
 DDC: 550 - Earth sciences
 Zusammenfassung: In order to achieve a consistent combination of terrestrial and satellite-derived (GRACE) gravity field variations reductions of systematic perturbations must be applied to both data sets. At the same time evidence needs to be provided that these reductions are both necessary and sufficient. Based on the OMCT and the ECCO model the gravity effect of non-tidal oceanic mass shifts is computed for various sites equipped with a superconducting gravimeter (SG) and esp. the long-periodic contributions are studied. With these oceanic models the dynamic ocean response to atmospheric pressure loading is automatically computed, and thus goes beyond the more simplistic concepts of an inverted barometer, or alternately a rigid ocean, which is a clear advantage. The findings so far are ambiguous: for instance the systematic seasonal change of about 10 nm/s2 in gravity for mid-European stations is presently not found in the observed gravity variations. Generally, the order of magnitude of the total effect of 22–27 nm/s2 is surprisingly large for inland stations. In some data sections the reduction leads to the removal of some of the larger residuals. The results obtained for the South-African station Sutherland differ. Here the modelled seasonal variation caused by the non-tidal oceanic mass redistribution and gravity residuals generally correlate, and thus by the reduction an improvement of the signal-to-noise ratio in the gravity observations is achieved. An explanation for the different results might be found in the global hydrological models. Such a model is needed in order to remove the effect of large-scale variations in continental water storage in the gravity observations. This reduction plays a greater role for European stations than for the South African site. A critical impact of the land-sea-mask used in the oceanic models and the subsequent insufficient resolution of the North and Baltic Sea on the computations at the mid-European sites could not be confirmed. From a comparison between the OMCT and the ECCO model substantial discrepancies in some regions of the earth emerge, while both predict variations at inland stations in Europe, South Africa, and Asia of similar magnitude. We currently hesitate to recommend including this reduction in the routine processing of SG data because the seasonal order of magnitude for inland stations is unexpectedly large and partly significant deviations between the modelled oceanic effects exist. If the order of magnitude proves to be correct universally, this reduction has to be applied.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2009
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: eDoc: 13989
GFZPOF: PT1 Planet Earth: Global Processes and Change
DOI: 10.1016/j.jog.2009.09.009
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Geodynamics
Genre der Quelle: Zeitschrift, SCI, Scopus
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 48 (3-5) Artikelnummer: - Start- / Endseite: 354 - 359 Identifikator: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals266