ausblenden:
Schlagwörter:
Eger Rift; Quaternary maar volcanism; Geophysical prospecting; Magnetostratigraphy; Palynology; Paleoclimate
Zusammenfassung:
After a comprehensive geophysical prospecting the Quaternary Mýtina Maar, located on a line between the two Quaternary scoria cones Komorní hůrka/Kammerbühl and Železná hůrka/Eisenbühl, could be revealed by a scientific drilling at the German–Czech border in 2007. Further geophysical field investigations led to the discovery of another geological structure about 2.5 km ESE of the small town Neualbenreuth (NE-Bavaria, Germany), inferred to be also a maar structure, being the fourth volcanic feature aligned along the NW–SE trending Tachov fault zone. It is only faintly indicated as a partial circular rim in the digital elevation model. Though not expressed by a clear magnetic anomaly, geoelectric and refraction seismic tomography strongly indicates a bowl-shaped depression filled with low-resistivity and low-velocity material, correlating well with the well-defined negative gravity anomaly of − 2.5 mGal. Below ca. 15 m-thick debris layer, successions of mostly laminated sediments were recovered in a 100 m-long sediment core in 2015. Sections of finely laminated layers, likely varves, rich in organic matter and tree pollen, were recognized in the upper (22–30 m) and lower (70–86 m) part of the core, respectively, interpreted as interglacials, whereas mostly minerogenic laminated deposits, poor in organic matter, and (almost) barren of tree pollen are interpreted as clastic glacial deposits. According to a preliminary age model based on magnetostratigraphy, palynology, radiocarbon dating, and cyclostratigraphy, the recovered sediments span the time window from about 85 ka back to about 270 ka, covering marine isotope stages 5–8. Sedimentation rates are in the range of 10 cm ka−1 in interglacials and up to 100 cm ka−1 in glacial phases. The stratigraphic record resembles the one from Mýtina Maar, with its eruption date being derived from a nearby tephra deposit at 288 ± 17 ka, thus supporting the age model of the inferred Neualbenreuth Maar.