English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  From 3D gravity to coupled fluid and heat transport modelling - a case study from the Upper Rhine Graben

Freymark, J., Sippel, J., Scheck-Wenderoth, M., Bär, K., Stiller, M., Fritsche, J.-G., Kracht, M. (2017): From 3D gravity to coupled fluid and heat transport modelling - a case study from the Upper Rhine Graben, (Geophysical Research Abstracts Vol. 19, EGU2017-8651), General Assembly European Geosciences Union (Vienna 2017).

Item is

Files

show Files

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Freymark, J.1, Author              
Sippel, Judith1, Author              
Scheck-Wenderoth, Magdalena1, Author              
Bär, Kristian2, Author
Stiller, Manfred3, Author              
Fritsche, Johann-Gerhard2, Author
Kracht, Matthias2, Author
Affiliations:
16.1 Basin Modelling, 6.0 Geotechnologies, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146042              
2External Organizations, ou_persistent22              
32.7 Near-surface Geophysics, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_1412893              

Content

show
hide
Free keywords: -
 Abstract: Numerical models that predict and help to understand subsurface hydrothermal conditions are key to reduce the risk of drilling non-productive geothermal wells. Such simulations of coupled fluid and heat transport need a reliable 3D structural model. Therefore, we use an integrated approach of data-based 3D structural, gravity, conductive thermal and thermo-hydraulic coupled modelling. The Upper Rhine Graben (URG) is known for its large potential for deep geothermal energy that is alreadyused in e.g. Soultz-sous-Forêts. In the frame of the EU-funded project “IMAGE” (Integrated Methods for Advanced Geothermal Exploration, grant agreement no. 608553), we assess the dominant processes and effective physical properties that control the deep thermal field of the URG. Therefore, we have built a lithospheric-scale 3D structural model of the URG by integrating existing data-based 3D models, deep seismic reflection and refraction profiles, as well as receiver function data. 3D gravity modelling was used to assess the internal configuration of the upper crystalline crust in addition to deep seismic lines. The resulting gravity-constrained 3D structural model was then used as base to calculate the 3D conductive thermal field. An analysis of deviations between measured and calculated temperatures revealed that heat transport connected to fluid circulation is probably relevant at depths above 2500 m. To test this hypotheses smaller-scale and higher resolution models for coupled fluid and heat transport were simulated. We present the results from this combined workflow con-sidering 3D gravity and 3D thermal modelling

Details

show
hide
Language(s): eng - English
 Dates: 2017
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: GFZPOF: p3 PT5 Georesources
 Degree: -

Event

show
hide
Title: General Assembly European Geosciences Union
Place of Event: Vienna
Start-/End Date: 2017-04-23 - 2017-04-28

Legal Case

show

Project information

show

Source 1

show
hide
Title: Geophysical Research Abstracts Vol. 19, EGU2017-8651
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -