Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Slivisu: A visual analytics tool to validate simulation models against collected data

Unger, A., Rabe, D., Klemann, V., Eggert, D., Dransch, D.(2018): Slivisu: A visual analytics tool to validate simulation models against collected data, Potsdam : GFZ Data Services.
https://doi.org/10.5880/GFZ.1.5.2018.007

Item is

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
Download static version of Slivisu v. 1.0.0
externe Referenz:
https://git.gfz-potsdam.de/sec15pub/slivisu (Ergänzendes Material)
Beschreibung:
Link to Project Page at GitLab

Urheber

einblenden:
ausblenden:
 Urheber:
Unger, A.1, Autor              
Rabe, Daniela1, Autor              
Klemann, V.2, Autor              
Eggert, Daniel1, Autor              
Dransch, D.1, Autor              
Affiliations:
11.5 Geoinformatics, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_224064              
21.3 Earth System Modelling, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146027              

Inhalt

einblenden:
ausblenden:
Schlagwörter: visual analytics, visual exploration, simulation models, simulation data, comparison of simulation and observation data
 Zusammenfassung: The validation of a simulation model is a crucial task in model development. It involves the comparison of simulation data to observation data and the identification of suitable model parameters. SLIVISU is a Visual Analytics framework that enables geoscientists to perform these tasks for observation data that is sparse and uncertain. Primarily, SLIVISU was designed to evaluate sea level indicators, which are geological or archaeological samples supporting the reconstruction of former sea level over the last ten thousands of years and are compiled in a postgreSQL database system. At the same time, the software aims at supporting the validation of numerical sea-level reconstructions against this data by means of visual analytics.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2018
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: Potsdam : GFZ Data Services, V. 1.0.0
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.5880/GFZ.1.5.2018.007
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: