Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Modeling the effects of regional groundwater flow on deep temperatures in Hesse (Germany)

Koltzer, N., Scheck-Wenderoth, M., Bott [Sippel], J., Cacace, M., Bär, K., Sass, I. (2019): Modeling the effects of regional groundwater flow on deep temperatures in Hesse (Germany), (Geophysical Research Abstracts Vol. 21, EGU2019-6930, 2019), General Assembly European Geosciences Union (Vienna 2019).

Item is

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://meetingorganizer.copernicus.org/EGU2019/EGU2019-6930.pdf (Ergänzendes Material)
Beschreibung:
-

Urheber

einblenden:
ausblenden:
 Urheber:
Koltzer, Nora1, Autor              
Scheck-Wenderoth, Magdalena1, Autor              
Bott [Sippel], Judith1, Autor              
Cacace, Mauro1, Autor              
Bär, Kristian2, Autor
Sass, Ingo2, Autor
Affiliations:
14.5 Basin Modelling, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146042              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: A successful utilization of deep geothermal resources requires to make accurate predictions about the reservoirtemperature distribution as well as an in depth knowledge of the hydraulic processes exerting a direct influence onthe subsurface temperature distribution and therefore on the productivity of geothermal reservoirs.The aim of this study is to investigate and quantify the influence that regional thermo-hydraulic processes exert onthe geothermal configuration of potential reservoirs in the German federal state Hesse. Specifically, we addressthe question of how the regional thermal and hydraulic configuration influences the local reservoir conditionsand whether it is possible to improve subsurface predictions iteratively by relying on 3D numerical modelingtechniques. Therefore, a 3D structural model of Hesse is used as a basis for coupled 3D thermo hydraulicsimulations of the deep fluid and heat transport. To uncover the effects of process coupling, a stepwise workflow isfollowed. We first simulate the thermal and hydraulic field under steady-state conditions by means of two differentuncoupled simulations and then analyze the results of the coupled thermo-hydraulic steady-state simulations. Ina last effort, we investigate the influence of fluid viscosity and density varying with temperature and pressure intransient coupled simulations.As a result of our numerical simulations, Hesse can be differentiated into sub-areas differing in terms of the domi-nating heat transport processes. In a final attempt to quantify the robustness and reliability of the modeling results,we carry out an analysis of the modelling outcomes by comparing them to available subsurface temperature data.Modelled temperatures show different levels of fit with locally measured well temperatures. These differences inmodel fit indicate the need for either structurally refined models and/or iterative adaptions within realistic rangesof the hydraulic and thermal properties. Structural refinements can often only be handled with smaller-scalemodels, which will, in turn, benefit from the boundary conditions and improved process understanding as derivedfrom the regional modelling approach presented here.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2019
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: GFZPOF: p3 PT5 Georesources
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: General Assembly European Geosciences Union
Veranstaltungsort: Vienna
Start-/Enddatum: 2019-04-07 - 2019-04-12

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Geophysical Research Abstracts Vol. 21, EGU2019-6930, 2019
Genre der Quelle: Reihe
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: -