Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Improving the Performance of Multi-GNSS (Global Navigation Satellite System) Ambiguity Fixing for Airborne Kinematic Positioning over Antarctica

Li, M., Xu, T., Flechtner, F., Förste, C., Lu, B., He, K. (2019): Improving the Performance of Multi-GNSS (Global Navigation Satellite System) Ambiguity Fixing for Airborne Kinematic Positioning over Antarctica. - Remote Sensing, 11, 8, 992.
https://doi.org/10.3390/rs11080992

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
5000506.pdf (Verlagsversion), 3MB
Name:
5000506.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
CC BY 4.0

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Li, Min1, Autor              
Xu, Tianhe2, Autor
Flechtner, Frank1, Autor              
Förste, C.1, Autor              
Lu, B.1, Autor              
He, Kaifei2, Autor
Affiliations:
11.2 Global Geomonitoring and Gravity Field, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146026              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Conventional relative kinematic positioning is difficult to be applied in the polar region of Earth since there is a very sparse distribution of reference stations, while precise point positioning (PPP), using data of a stand-alone receiver, is recognized as a promising tool for obtaining reliable and accurate trajectories of moving platforms. However, PPP and its integer ambiguity fixing performance could be much degraded by satellite orbits and clocks of poor quality, such as those of the geostationary Earth orbit (GEO) satellites of the BeiDou navigation satellite system (BDS), because temporal variation of orbit errors cannot be fully absorbed by ambiguities. To overcome such problems, a network-based processing, referred to as precise orbit positioning (POP), in which the satellite clock offsets are estimated with fixed precise orbits, is implemented in this study. The POP approach is validated in comparison with PPP in terms of integer ambiguity fixing and trajectory accuracy. In a simulation test, multi-GNSS (global navigation satellite system) observations over 14 days from 136 globally distributed MGEX (the multi-GNSS Experiment) receivers are used and four of them on the coast of Antarctica are processed in kinematic mode as moving stations. The results show that POP can improve the ambiguity fixing of all system combinations and significant improvement is found in the solution with BDS, since its large orbit errors are reduced in an integrated adjustment with satellite clock offsets. The four-system GPS+GLONASS+Galileo+BDS (GREC) fixed solution enables the highest 3D position accuracy of about 3.0 cm compared to 4.3 cm of the GPS-only solution. Through a real flight experiment over Antarctica, it is also confirmed that POP ambiguity fixing performs better and thus can considerably speed up (re-)convergence and reduce most of the fluctuations in PPP solutions, since the continuous tracking time is short compared to that in other regions.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2019-04-252019
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.3390/rs11080992
GFZPOF: p3 PT1 Global Processes
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Remote Sensing
Genre der Quelle: Zeitschrift, SCI, Scopus, OA
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 11 (8) Artikelnummer: 992 Start- / Endseite: - Identifikator: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals426