English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Multi-GNSS precise position, velocity, and acceleration determination for airborne gravimetry over Antarctica

Li, M. (2020): Multi-GNSS precise position, velocity, and acceleration determination for airborne gravimetry over Antarctica, PhD Thesis, Berlin : Technische Universität Berlin, 95 p.
https://doi.org/10.14279/depositonce-9491

Item is

Basic

show hide
Item Permalink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5000508 Version Permalink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5000508_4
Genre: Thesis

Files

show Files
hide Files
:
min_li.pdf (Publisher version), 14MB
Name:
phd thesis_min_li.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
CC BY 4.0

Locators

show

Creators

show
hide
 Creators:
Li, Min1, Author              
Flechtner, Frank1, Referee              
Weber, Robert2, Referee
Ge, Maorong3, Referee              
Affiliations:
11.2 Global Geomonitoring and Gravity Field, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146026              
2External Organizations, ou_persistent22              
31.1 Space Geodetic Techniques, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146025              

Content

show
hide
Free keywords: Dissertation, Technische Universität Berlin, 2019 precise point positioning, double-difference, velocity, acceleration, Antarctica
 Abstract: The precise knowledge of aircraft position, velocity, and acceleration is a mandatory prerequisite for airborne gravimetry. For the determination of these quantities the Global Navigation Satellite System (GNSS) plays an important role. However, kinematic positioning over Antarctica is a challenging task which is different from positioning in low-latitude regions. The main reason is the sparse distribution of International GNSS Service (IGS) ground stations which is also difficult or impractical to be densified by setting up dedicated reference stations because of its hostile environment. Therefore, traditional double-differenced (DD) positioning using Global Positioning System (GPS) may be difficult to be applied. Precise Point Positioning (PPP) using a stand-alone receiver is recognized as a helpful tool for obtaining reliable and accurate trajectories of moving platforms based on precise orbit and clock products derived from a global reference network. Therefore, it is necessary to study the special characteristics of positioning over Antarctica and to exploit innovative and reliable approaches for precise position, velocity and acceleration determination. An extended precise positioning method called Precise Orbit Positioning (POP), which was originally developed in Salazar et al. (2009), is further developed towards application with multi-GNSS data. This approach takes advantage of a widely spaced network of ground stations to estimate satellite clock offsets and drifts and only relies on precise orbit information. It is illustrated that POP has the potential to achieve centimeter-level accuracy for the vertical component with sparse distributed reference stations. The aforesaid POP method is extended further to derive reliable and high accurate velocity and acceleration which are more important than position for airborne gravimetry. A GPS+GLONASS+Galileo+BDS four-system model is presented and proper weighting of different types of observations is investigated. The PPP solutions are also calculated with multi-GNSS observations for comparison. During static tests over Antarctica, it was found that POP derived velocity and acceleration tend to have much lower noise than the PPP solutions. Moreover, the addition of GLONASS, Galileo and BDS data can increase the accuracy of velocity and acceleration estimates by 32% and 43% with POP compared to a GPS-only solution when using data of 30-second sampling interval and the improvements are 28% and 31% with respect to the PPP solutions.
 Abstract: Die genaue Kenntnis der Flugzeugposition, -geschwindigkeit und -beschleunigung ist eine zwingende Voraussetzung für die gravimetrische Vermessung aus der Luft. Für die Bestimmung dieser Größen spielt das Global Navigation Satellite System (GNSS) eine wichtige Rolle. Die kinematische Positionierung über der Antarktis ist jedoch eine anspruchsvolle Aufgabe, die sich von der Positionierung in Regionen mit niedriger Breite unterscheidet. Der Hauptgrund ist die spärliche Verteilung der Bodenstationen des Internationalen GNSS-Dienstes (IGS), die zudem aufgrund der widrigen Bedingungen in der Antarktis nur sehr schwierig durch die Einrichtung spezieller Referenzstationen verdichtet werden kann. Daher ist es schwierig, die traditionelle Doppeldifferenzmessung (DD) mit dem Global Positioning System (GPS) anzuwenden. Die präzise Punktpositionierung (PPP) mit einem eigenständigen Empfänger ist als hilfreiche Methode zur Erzielung zuverlässiger und genauer Trajektorien von bewegten Plattformen auf der Grundlage von präzisen Orbit- und Uhrenprodukten aus einem globalen Referenznetzwerk anerkannt. Einerseits kann die Genauigkeit von Echtzeitprodukten die Anforderung an die Trajektoriengewinnung für die luftgestützte Gravimetrie noch nicht erfüllen, andererseits weisen die IGS-Endprodukte noch eine tagesgebundene Diskontinuität auf. Zudem wurden bei Produkten neuerer GNSS-Systeme regionale Verzerrungen nachgewiesen, die die ganzzahlige Mehrdeutigkeitsauflösung der PPP erheblich verschlechtern können. Daher ist es notwendig, die besonderen Eigenschaften der Positionierung über der Antarktis zu untersuchen und innovative und zuverlässige Ansätze zur präzisen Positions-, Geschwindigkeits- und Beschleunigungsbestimmung zu entwickeln. Eine erweiterte präzise Positionierungsmethode namens Precise Orbit Positioning (POP), die ursprünglich in Salazar et al. (2009) entwickelt wurde, wurde in Richtung der Anwendung mit Multi-GNSS-Daten weiterentwickelt. Dieser Ansatz nutzt ein weit verzweigtes Netz von Bodenstationen, um Versatz und Drift der Satellitenuhren zu schätzen und stützt sich nur auf präzise Orbitinformationen. Die vorgenannte POP-Methode wurde weiter ausgebaut, um zuverlässige und hochpräzise Geschwindigkeit und Beschleunigung abzuleiten, die für die luftgestützte Gravimetrie wichtiger sind als die Position. Ein GPS+GLONASS+Galileo+BeiDou Viersystemmodell wird vorgestellt und die richtige Gewichtung verschiedener Arten von Beobachtungen untersucht. Die PPP-Lösungen werden auch mit Multi-GNSS-Beobachtungen zum Vergleich berechnet. Bei statischen Tests über der Antarktis wurde festgestellt, dass die von POP abgeleitete Geschwindigkeit und Beschleunigung tendenziell viel weniger verrauscht sind als die PPP-Lösungen. Darüber hinaus kann die Hinzufügung von GLONASS-, Galileo- und BDS-Daten die Genauigkeit der Geschwindigkeits- und Beschleunigungsschätzungen um 32% bzw. 43% gegenüber einer reinen GPS-Lösung bei Verwendung von Daten mit einem Abtastintervall von 30 Sekunden erhöht werden. Die Verbesserungen liegen dann bei 28% bzw. 31% gegenüber den PPP-Lösungen.

Details

show
hide
Language(s): eng - English
 Dates: 2019-09-102020
 Publication Status: Finally published
 Pages: 95
 Publishing info: Berlin : Technische Universität Berlin
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.14279/depositonce-9491
GFZPOF: p3 PT1 Global Processes
 Degree: PhD

Event

show

Legal Case

show

Project information

show

Source

show