English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany

Fersch, B., Francke, T., Heistermann, M., Schrön, M., Döpper, V., Jakobi, J., Baroni, G., Blume, T., Bogena, H., Budach, C., Gränzig, T., Förster, M., Güntner, A., Hendricks Franssen, H.-J., Kasner, M., Köhli, M., Kleinschmit, B., Kunstmann, H., Patil, A., Rasche, D., Scheiffele, L., Schmidt, U., Szulc-Seyfried, S., Weimar, J., Zacharias, S., Zreda, M., Heber, B., Kiese, R., Mares, V., Mollenhauer, H., Völksch, I., Oswald, S. (2020): A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany. - Earth System Science Data, 12, 2289-2309.
https://doi.org/10.5194/essd-12-2289-2020

Item is

Files

show Files
hide Files
:
5003299.pdf (Publisher version), 6MB
Name:
5003299.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Fersch, Benjamin1, Author
Francke, Till1, Author
Heistermann, Maik1, Author
Schrön, Martin1, Author
Döpper, Veronika1, Author
Jakobi, Jannis1, Author
Baroni, Gabriele1, Author
Blume, T.2, Author              
Bogena, Heye1, Author
Budach, Christian1, Author
Gränzig, Tobias1, Author
Förster, Michael1, Author
Güntner, A.2, Author              
Hendricks Franssen, Harrie-Jan1, Author
Kasner, Mandy1, Author
Köhli, Markus1, Author
Kleinschmit, Birgit1, Author
Kunstmann, Harald1, Author
Patil, Amol1, Author
Rasche, Daniel2, Author              
Scheiffele, Lena1, AuthorSchmidt, Ulrich1, AuthorSzulc-Seyfried, Sandra1, AuthorWeimar, Jannis1, AuthorZacharias, Steffen1, AuthorZreda, Marek1, AuthorHeber, Bernd1, AuthorKiese, Ralf1, AuthorMares, Vladimir1, AuthorMollenhauer, Hannes1, AuthorVölksch, Ingo1, AuthorOswald, Sascha1, Author more..
Affiliations:
1External Organizations, ou_persistent22              
24.4 Hydrology, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146048              

Content

show
hide
Free keywords: -
 Abstract: Monitoring soil moisture is still a challenge: it varies strongly in space and time and at various scales while conventional sensors typically suffer from small spatial support. With a sensor footprint up to several hectares, cosmic-ray neutron sensing (CRNS) is a modern technology to address that challenge. So far, the CRNS method has typically been applied with single sensors or in sparse national-scale networks. This study presents, for the first time, a dense network of 24 CRNS stations that covered, from May to July 2019, an area of just 1 km2: the pre-Alpine Rott headwater catchment in Southern Germany, which is characterized by strong soil moisture gradients in a heterogeneous landscape with forests and grasslands. With substantially overlapping sensor footprints, this network was designed to study root-zone soil moisture dynamics at the catchment scale. The observations of the dense CRNS network were complemented by extensive measurements that allow users to study soil moisture variability at various spatial scales: roving (mobile) CRNS units, remotely sensed thermal images from unmanned areal systems (UASs), permanent and temporary wireless sensor networks, profile probes, and comprehensive manual soil sampling. Since neutron counts are also affected by hydrogen pools other than soil moisture, vegetation biomass was monitored in forest and grassland patches, as well as meteorological variables; discharge and groundwater tables were recorded to support hydrological modeling experiments. As a result, we provide a unique and comprehensive data set to several research communities: to those who investigate the retrieval of soil moisture from cosmic-ray neutron sensing, to those who study the variability of soil moisture at different spatiotemporal scales, and to those who intend to better understand the role of root-zone soil moisture dynamics in the context of catchment and groundwater hydrology, as well as land–atmosphere exchange processes. The data set is available through the EUDAT Collaborative Data Infrastructure and is split into two subsets: https://doi.org/10.23728/b2share.282675586fb94f44ab2fd09da0856883 (Fersch et al., 2020a) and https://doi.org/10.23728/b2share.bd89f066c26a4507ad654e994153358b (Fersch et al., 2020b).

Details

show
hide
Language(s): eng - English
 Dates: 2020-09-232020
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.5194/essd-12-2289-2020
GFZPOF: p3 PT1 Global Processes
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Earth System Science Data
Source Genre: Journal, SCI, Scopus, oa
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 12 Sequence Number: - Start / End Page: 2289 - 2309 Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals2_126
Publisher: Copernicus