English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Glaciohydraulic seismic tremors on an Alpine glacier

Lindner, F., Walter, F., Laske, G., Gimbert, F. (2020): Glaciohydraulic seismic tremors on an Alpine glacier. - The Cryosphere, 14, 287-308.
https://doi.org/10.5194/tc-14-287-2020

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Lindner, Fabian1, 2, Author
Walter, Fabian1, 2, Author
Laske, Gabi1, 2, Author
Gimbert, Florent1, 2, Author
Affiliations:
1External Organizations, ou_persistent22              
2Publikationen aller GIPP-unterstützten Projekte, Deutsches GeoForschungsZentrum, Potsdam, ou_44021              

Content

show
hide
Free keywords: -
 Abstract: Hydraulic processes impact viscous and brittle ice deformation. Water-driven fracturing as well as turbulent water flow within and beneath glaciers radiate seismic waves which provide insights into otherwise hard-to-access englacial and subglacial environments. In this study, we analyze glaciohydraulic tremors recorded by four seismic arrays installed in different parts of Glacier de la Plaine Morte, Switzerland. Data were recorded during the 2016 melt season including the sudden subglacial drainage of an ice-marginal lake. Together with our seismic data, discharge, lake level, and ice flow measurements provide constraints on glacier hydraulics. We find that the tremors are generated by subglacial water flow, in moulins, and by icequake bursts. The dominating process can vary on sub-kilometer and sub-daily scales. Consistent with field observations, continuous source tracking via matched-field processing suggests a gradual up-glacier progression of an efficient drainage system as the melt season progresses. The ice-marginal lake likely connects to this drainage system via hydrofracturing, which is indicated by sustained icequake signals emitted from the proximity of the lake basin and starting roughly 24 h prior to the lake drainage. To estimate the hydraulics associated with the drainage, we use tremor–discharge scaling relationships. Our analysis suggests a pressurization of the subglacial environment at the drainage onset, followed by an increase in the hydraulic radii of the conduits and a subsequent decrease in the subglacial water pressure as the capacity of the drainage system increases. The pressurization is in phase with the drop in the lake level, and its retrieved maximum coincides with ice uplift measured via GPS. Our results highlight the use of cryo-seismology for monitoring glacier hydraulics.

Details

show
hide
Language(s):
 Dates: 2020-01-282020
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.5194/tc-14-287-2020
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Cryosphere
Source Genre: Journal, SCI, Scopus, oa
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 14 Sequence Number: - Start / End Page: 287 - 308 Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/140507
Publisher: Copernicus