English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Reply to Comments by N. Sultan on “Sedimentation Controls on Methane‐Hydrate Dynamics Across Glacial/Interglacial Stages: An Example From International Ocean Discovery Program Site U1517, Hikurangi Margin”

Screaton, E. J., Torres, M. E., Dugan, B., Heeschen, K., Mountjoy, J. J., Ayres, C., Rose, P. S., Pecher, I. A., Barnes, P. M., LeVay, L. J. (2020): Reply to Comments by N. Sultan on “Sedimentation Controls on Methane‐Hydrate Dynamics Across Glacial/Interglacial Stages: An Example From International Ocean Discovery Program Site U1517, Hikurangi Margin”. - Geochemistry Geophysics Geosystems (G3), 21, 6, e2020GC009005.
https://doi.org/10.1029/2020GC009005

Item is

Files

show Files
hide Files
:
5003821.pdf (Publisher version), 8MB
Name:
5003821.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Screaton, E. J.1, Author
Torres, M. E.1, Author
Dugan, B.1, Author
Heeschen, Katja2, Author              
Mountjoy, J. J.1, Author
Ayres, C.1, Author
Rose, P. S.1, Author
Pecher, I. A.1, Author
Barnes, P. M.1, Author
LeVay, L. J.1, Author
Affiliations:
1External Organizations, ou_persistent22              
23.1 Inorganic and Isotope Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146040              

Content

show
hide
Free keywords: -
 Abstract: Screaton et al. (2019, https://doi.org/10.1029/2019GC008603) examined the role of sedimentation, sea level, and bottom water temperature (BWT) changes due to glaciation as drivers for the downward migration of the base of gas hydrate stability and gas hydrate formation. International Ocean Discovery Program (IODP) Site U1517 in the Hikurangi margin was used as a case study because data at this site document a marked increase in chloride over a broad depth range, which was attributed to recent gas hydrate formation. In a comment on Screaton et al. (2019, https://doi.org/10.1029/2019GC008603), Sultan (2020, https://doi.org/10.1029/2019gc008846) used a linear thermal profile to argue that inferences and characterization of methane hydrate at IODP Site U1517 were incorrect because some occur below his estimated base of gas hydrate stability (BGHS). Based on this apparent discrepancy, Sultan (2020, https://doi.org/10.1029/2019gc008846) further stated that low‐chloride spikes may be unreliable indicators of methane hydrate occurrence. In this reply, we emphasize that unsteady‐state, and thus nonlinear, thermal profiles are likely in areas experiencing active sedimentation and bottom‐water temperature (BWT) changes. The resulting deviation from steady‐state temperature profile shifts the BGHS downward. In addition, sedimentation has the potential to bury methane hydrate more rapidly than it dissociates, helping to explain how methane hydrate could be observed below the BGHS. We also review the supporting evidence for gas‐hydrate occurrence at Site U1517 and the criteria used for Site U1517 site selection.

Details

show
hide
Language(s):
 Dates: 2020-06-112020
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1029/2020GC009005
GFZPOF: p3 PT8 Oceans
GFZPOF: p3 PT4 Natural Hazards
OATYPE: Green Open Access
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Geochemistry Geophysics Geosystems (G3)
Source Genre: Journal, SCI, Scopus, oa , OA seit 15. September 2021
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 21 (6) Sequence Number: e2020GC009005 Start / End Page: - Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals159
Publisher: American Geophysical Union (AGU)