English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Using Array‐Derived Rotational Motion to Obtain Local Wave Propagation Properties From Earthquakes Induced by the 2018 Geothermal Stimulation in Finland

Taylor, G., Hillers, G., Vuorinen, T. A. T. (2021): Using Array‐Derived Rotational Motion to Obtain Local Wave Propagation Properties From Earthquakes Induced by the 2018 Geothermal Stimulation in Finland. - Geophysical Research Letters, 48, 6, e2020GL090403.
https://doi.org/10.1029/2020GL090403

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Taylor, G.1, 2, Author
Hillers, G.1, 2, Author
Vuorinen, T. A. T.1, 2, Author
Affiliations:
1External Organizations, ou_persistent22              
2Publikationen aller GIPP-unterstützten Projekte, Deutsches GeoForschungsZentrum, Potsdam, ou_44021              

Content

show
hide
Free keywords: -
 Abstract: We estimate vertical rotation rates for 204 earthquakes that were induced by the 2018 stimulation of the Espoo/Helsinki geothermal reservoir from wavefield gradients across geophone arrays. The array-derived rotation rates from seismograms recorded at 6–9 km hypocentral distances vary between 10−9 and 10−7 rad s−1, indicating a comparable sensitivity to portable rotational instruments. Using co-located observations of translational and rotational motion, we estimate the local propagation direction and the apparent phase speed of SH waves, and compare these estimates with those obtained by S wave beamforming. Propagation directions generally align with the earthquake back azimuths, but both techniques show deviations indicative of heterogeneous seismic structure. The rotational method facilitates a station-by-station approach that resolves site specific variations that are controlled by the local geology. We measure apparent S wave speeds larger than 5 km s−1, consistent with steep incidence angles and high propagation velocities in the Fennoscandian Shield.

Details

show
hide
Language(s): eng - English
 Dates: 2021-03-242021
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1029/2020GL090403
GFZPOF: p4 MESI
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Geophysical Research Letters
Source Genre: Journal, SCI, Scopus, ab 2023 oa
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 48 (6) Sequence Number: e2020GL090403 Start / End Page: - Identifier: ISSN: 1944-8007
ISSN: 0094-8276
CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals182
Publisher: American Geophysical Union (AGU)