Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  The impact of image resolution on power, bias, and confounding

McIsaac, M. A., Sanders, E., Kuester, T., Aronson, K. J., Kyba, C. (2021): The impact of image resolution on power, bias, and confounding. - Environmental Epidemiology, 5, 2, e145.
https://doi.org/10.1097/EE9.0000000000000145

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
McIsaac, Michael A.1, Autor
Sanders, Eric1, Autor
Kuester, Theres2, Autor              
Aronson, Kristan J.1, Autor
Kyba, C.2, Autor              
Affiliations:
1External Organizations, ou_persistent22              
21.4 Remote Sensing, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146028              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Light at night; Environmental pollutants; Bias; Error; Circadian rhythm; Visible infrared imaging radiometer suite day/night band
 Zusammenfassung: Background: Studies of the impact of environmental pollutants on health outcomes can be compromised by mismeasured exposures or unmeasured confounding with other environmental exposures. Both problems can be exacerbated by measuring exposure from data sources with low spatial resolution. Artificial light at night, for example, is often estimated from low-resolution satellite images, which may result in substantial measurement error and increased correlation with air or noise pollution. Methods: Light at night exposure was considered in simulated epidemiologic studies in Vancouver, British Columbia. First, we assessed statistical power and bias for hypothetical studies that replaced true light exposure with estimates from sources with low resolution. Next, health status was simulated based on pollutants other than light exposure, and we assessed the frequency with which studies might incorrectly attribute negative health impacts to light exposure as a result of unmeasured confounding by the other environmental exposures. Results: When light was simulated to be the causal agent, studies relying on low-resolution data suffered from lower statistical power and biased estimates. Additionally, correlations between light and other pollutants increased as the spatial resolution of the light exposure map decreased, so studies estimating light exposure from images with lower spatial resolution were more prone to confounding. Conclusions: Studies estimating exposure to pollutants from data with lower spatial resolution are prone to increased bias, increased confounding, and reduced power. Studies examining effects of light at night should avoid using exposure estimates based on low-resolution maps, and should consider potential confounding with other environmental pollutants. What this study adds

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2021-04-022021
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1097/EE9.0000000000000145
GFZPOF: p4 T5 Future Landscapes
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Environmental Epidemiology
Genre der Quelle: Zeitschrift, other
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 5 (2) Artikelnummer: e145 Start- / Endseite: - Identifikator: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/20210423
Publisher: Wolters Kluwer