English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The spatio-temporal structure of the Lateglacial to early Holocene transition reconstructed from the pollen record of Lake Suigetsu and its precise correlation with other key global archives: Implications for palaeoclimatology and archaeology

Nakagawa, T., Tarasov, P., Staff, R., Ramsey, C. B., Marshall, M., Schlolaut, G., Bryant, C., Brauer, A., Lamb, H., Haraguchi, T., Gotanda, K., Kitaba, I., Kitagawa, H., van der Plicht, J., Yonenobu, H., Omori, T., Yokoyama, Y., Tada, R., Yasuda, Y. (2021): The spatio-temporal structure of the Lateglacial to early Holocene transition reconstructed from the pollen record of Lake Suigetsu and its precise correlation with other key global archives: Implications for palaeoclimatology and archaeology. - Global and Planetary Change, 202, 103493.
https://doi.org/10.1016/j.gloplacha.2021.103493

Item is

Files

show Files
hide Files
:
5006622.pdf (Publisher version), 12MB
Name:
5006622.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Nakagawa, Takeshi1, Author
Tarasov, Pavel1, Author
Staff, Richard1, Author
Ramsey, Christopher Bronk1, Author
Marshall, Michael1, Author
Schlolaut, Gordon2, Author              
Bryant, Charlotte1, Author
Brauer, A.2, Author              
Lamb, Henry1, Author
Haraguchi, Tsuyoshi1, Author
Gotanda, Katsuya1, Author
Kitaba, Ikuko1, Author
Kitagawa, Hiroyuki1, Author
van der Plicht, Johannes1, Author
Yonenobu, Hitoshi1, Author
Omori, Takayuki1, Author
Yokoyama, Yusuke1, Author
Tada, Ryuji1, Author
Yasuda, Yoshinori1, Author
Affiliations:
1External Organizations, ou_persistent22              
24.3 Climate Dynamics and Landscape Evolution, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146046              

Content

show
hide
Free keywords: OPEN ACCESS. Lake Suigetsu Pollen Climate reconstruction Lateglacial Climatic leads and lags First agricultural revolution
 Abstract: Leads, lags, or synchronies in climatic events among different regions are key to understanding mechanisms of climate change, as they provide insights into the causal linkages among components of the climate system. The well-studied transition from the Lateglacial to early Holocene (ca. 16–10 ka) contains several abrupt climatic shifts, making this period ideal for assessing the spatio-temporal structure of climate change. However, comparisons of timings of past climatic events among regions often remain hypothetical because site-specific age scales are not necessarily synchronised to each other. Here we present new pollen data (n = 510) and mean annual temperature reconstruction from the annually laminated sediments of Lake Suigetsu, Japan. Suigetsu's 14C dataset is an integral component of the IntCal20 radiocarbon calibration model, in which the absolute age scale is established to the highest standard. Its exceptionally high-precision chronology, along with recent advances in cosmogenic isotope studies of ice cores, enables temporally coherent comparisons among Suigetsu, Greenland, and other key proxy records across regions. We show that the onsets of the Lateglacial cold reversal (equivalent to GS-1/Younger Dryas) and the Holocene were synchronous between East Asia and the North Atlantic, whereas the Lateglacial interstadial (equivalent to GI-1/Bølling-Allerød) started ca. two centuries earlier in East Asia than in the North Atlantic. Bimodal migration (or ‘jump’) of the westerly jet between north and south of the Tibetan plateau and Himalayas may have operated as a threshold system responsible for the abruptness of the change in East and South (and possibly also West) Asia. That threshold in Asia and another major threshold in the North Atlantic, associated with switching on/off of the Atlantic meridional overturning circulation (AMOC), were crossed at different times, producing a multi-centennial asynchrony of abrupt changes, as well as a disparity of climatic modes among regions during the transitional phases. Such disparity may have disturbed zonal circulation and generated unstable climate during transitions. The intervening periods with stable climate, on the other hand, coincided with the beginnings of sedentary life and agriculture, implying that these new lifestyles and technologies were not rational unless climate was stable and thus, to a certain extent, predictable.

Details

show
hide
Language(s):
 Dates: 20212021
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1016/j.gloplacha.2021.103493
GFZPOF: p4 T2 Ocean and Cryosphere
OATYPE: Hybrid Open Access
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Global and Planetary Change
Source Genre: Journal, SCI, Scopus
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 202 Sequence Number: 103493 Start / End Page: - Identifier: ISSN: 0921-8181
ISSN: 1872-6364
CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals190
Publisher: Elsevier