English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Modeled and Observed Bedrock Displacements in North‐East Greenland Using Refined Estimates of Present‐Day Ice‐Mass Changes and Densified GNSS Measurements

Kappelsberger, M. T., Strößenreuther, U., Scheinert, M., Horwath, M., Groh, A., Knöfel, C., Lunz, S., Khan, S. A. (2021): Modeled and Observed Bedrock Displacements in North‐East Greenland Using Refined Estimates of Present‐Day Ice‐Mass Changes and Densified GNSS Measurements. - Journal of Geophysical Research: Earth Surface, 126, 4, e2020JF005860.
https://doi.org/10.1029/2020JF005860

Item is

Files

show Files
hide Files
:
5006915.pdf (Publisher version), 5MB
Name:
5006915.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
CC BY-NC-ND 4.0

Locators

show

Creators

show
hide
 Creators:
Kappelsberger, Maria T.1, Author
Strößenreuther, Undine1, Author
Scheinert, Mirko1, Author
Horwath, Martin1, Author
Groh, Andreas1, Author
Knöfel, Christoph1, Author
Lunz, Susanne2, Author              
Khan, Shfaqat A.1, Author
Affiliations:
1External Organizations, ou_persistent22              
21.1 Space Geodetic Techniques, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146025              

Content

show
hide
Free keywords: -
 Abstract: Models of the glacial-isostatic adjustment (GIA) to past ice-mass changes exhibit large differences in north-east Greenland owing to insufficient knowledge about glacial history and Earth rheology. The GIA uncertainties feed back to uncertainties in present-day mass-balance estimates from satellite gravimetry. Geodetic Global Navigation Satellite System (GNSS) measurements allow to directly observe displacement of bedrock. We present results from repeated and continuous GNSS measurements conducted within five measurement campaigns between 2008 and 2017. We used the observed uplift rates to validate different GIA models in conjunction with estimates of the elastic response of the solid Earth to present-day ice-mass changes. To determine present-day ice-mass changes and the associated elastic deformations, we combined satellite altimetry data from CryoSat-2 with satellite gravimetry data from the Gravity Recovery and Climate Experiment for the entire Greenland Ice Sheet (GrIS) and included peripheral glaciers and ice caps. The different GIA models were consistently used in all processing steps. The GNSS measurements in north-east Greenland revealed uplift rates in the range of 2.8 to 8.9 mm yr−1. The comparison of the total displacement predicted by GIA and elastic modeling with the GNSS-based displacement clearly favors GIA models that show low rates (0.7–4.4 mm yr−1 at the GNSS sites) against GIA models with higher rates of up to 8.3 mm yr−1. The correction due to the favored GIA model in north-east Greenland results in an ice-mass loss of 233 ± 43 Gt yr−1 for the GrIS including peripheral glaciers over the period July 2010 to June 2017.

Details

show
hide
Language(s): eng - English
 Dates: 2021-04-042021
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1029/2020JF005860
GFZPOF: p4 T3 Restless Earth
OATYPE: Hybrid Open Access
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Geophysical Research: Earth Surface
Source Genre: Journal, SCI, Scopus
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 126 (4) Sequence Number: e2020JF005860 Start / End Page: - Identifier: ISSN: 2169-9003
ISSN: 2169-9011
CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/jgr_earth_surface
Publisher: Wiley
Publisher: American Geophysical Union (AGU)