English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Ultra-high pressure inclusion in Archean ophiolitic podiform chromitite in mélange block suggests deep subduction on early Earth

Kusky, T., Wang, L., Robinson, P. T., Huang, Y., Wirth, R., Ning, W., Zhong, Y., Polat, A. (2021): Ultra-high pressure inclusion in Archean ophiolitic podiform chromitite in mélange block suggests deep subduction on early Earth. - Precambrian Research, 362, 106318.
https://doi.org/10.1016/j.precamres.2021.106318

Item is

Files

show Files
hide Files
:
5007398.pdf (Postprint), 8MB
Name:
5007398.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Kusky, Timothy1, Author
Wang, Lu1, Author
Robinson, Paul T.1, Author
Huang, Yang1, Author
Wirth, R.2, Author              
Ning, Wenbin1, Author
Zhong, Yating1, Author
Polat, Ali1, Author
Affiliations:
1External Organizations, ou_persistent22              
23.5 Interface Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_754888              

Content

show
hide
Free keywords: -
 Abstract: The discovery of ultrahigh pressure (UHP) minerals in orogenic belts has revolutionized our understanding of subduction and the return flow of previously deeply subducted material to Earth's surface as part of the cycling and interaction of crustal and mantle systems. One class of UHP minerals is found as inclusions in orogenic peridotite-hosted podiform-chromite systems, within Phanerozoic ophiolites and ophiolitic mélanges. Such inclusions have opened a window into processes of recycling of crustal materials to the deep mantle and back through subduction and mantle convection in Phanerozoic orogens. Here, we document the first occurrence of an UHP mineral hosted in an ophiolitic podiform chromitite mélange from the Neoarchean paired metamorphic belt of the Central (Taihang) Orogenic Belt, Northern China. Numerous inclusions of rutile, apatite, dolomite, and amphibole are interpreted to be crustal-derived; they occur in podiform chromite grains hosted in a 2.6–2.5 Ga ophiolitic mélange now part of the North China Craton and formed by subduction of oceanic and continental material. Microstructures and phase relationships in a multi-phase inclusion of TiO2(II), rutile, apatite, and tremolite yield minimum P-T conditions of 7.5 GPa at 1000 °C, indicating that the crustal host, including carbonates, were subducted to depths > 270 km, transferred to the mantle of the overriding plate, and returned to the surface by 2.5 Ga. We suggest that slab rollback forced upward mantle flow, incorporating entities from the lower plate, perhaps in serpentinite diapirs, resulting in adiabatic melting that allowed crustal material to be trapped in chromite grains crystallizing in high-Mg melts. Contrasting bulk moduli and thermal contraction of the inclusions and host chromite protected the inclusions from P-induced back-reaction during exhumation. Together, these features show that the 1600 km long Central (Taihang) Orogenic Belt is emerging as the world’s first well-documented Phanerozoic style orogen, with classic tectonic zonation, ophiolitic mélanges, paired metamorphism, local evidence for UHP conditions, foreland basins, and late to post orogenic magmatism. Applying the null hypothesis, we explain this high degree of similarity by invoking the operation of Phanerozoic style plate tectonics, at least throughout the 1600 km length of the COB, and by geological comparison, in other similar aged geological terrains globally. From this we infer modern-style plate tectonics was operating in the Neoarchean.

Details

show
hide
Language(s):
 Dates: 20212021
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1016/j.precamres.2021.106318
GFZPOF: p4 MESI
OATYPE: Green Open Access
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Precambrian Research
Source Genre: Journal, SCI, Scopus, p3
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 362 Sequence Number: 106318 Start / End Page: - Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals409
Publisher: Elsevier