English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Anelasticity and lateral heterogeneities in Earth's upper mantle: impact on surface displacements, self‐attraction and loading and ocean tide dynamics

Huang, P., Sulzbach, R., Tanaka, Y., Klemann, V., Dobslaw, H., Martinec, Z., Thomas, M. (2021): Anelasticity and lateral heterogeneities in Earth's upper mantle: impact on surface displacements, self‐attraction and loading and ocean tide dynamics. - Journal of Geophysical Research: Solid Earth, 126, 9, e2021JB022332.
https://doi.org/10.1029/2021JB022332

Item is

Files

show Files
hide Files
:
5007589.pdf (Publisher version), 3MB
Name:
5007589.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Huang, Pingping1, Author              
Sulzbach, Roman1, Author              
Tanaka, Yoshiyuki2, Author
Klemann, V.1, Author              
Dobslaw, H.1, Author              
Martinec, Zdeněk2, Author
Thomas, M.1, Author              
Affiliations:
11.3 Earth System Modelling, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146027              
2External Organizations, ou_persistent22              

Content

show
hide
Free keywords: DEAL Wiley. lateral heterogeneity; mantle anelasticity; ocean-tide loading; surface displacement; self-attraction and loading; ocean dynamics
 Abstract: Surface displacements and self-attraction and loading (SAL) elevation induced by ocean tides are known to be affected by material properties of the solid Earth. Recent studies have shown that, in addition to elasticity, anelasticity considerably impacts surface displacements due to ocean tide loading (OTL). We employ consistent 3D seismic elastic and attenuation tomography models to construct 3D elastic and anelastic earth models, and derive corresponding averaged 1D elastic/anelastic models. We apply these models to systematically study the impact of anelasticity and lateral heterogeneity on M2 OTL displacements and SAL elevation. We find that neglecting lateral heterogeneities highly underestimates displacements and SAL elevation in mid-ocean-ridge regions and in some coastal areas of North and Central America. In comparison to PREM, 3D anelastic models can increase the predicted amplitudes of the vertical displacement and SAL elevation by up to 1.5 mm. The increased amplitudes reduce the discrepancy between GPS-observed OTL displacements and their predictions based on PREM in places like Cornwall (England), Brittany (France) and the Ryukyu Islands (Japan). Applying our results to ocean tides, we discover that the impact on ocean tide dynamics exceeds the predicted SAL elevation correction with an RMS of about 1 mm, reaching an RMS of more than 5 mm in areas like North Atlantic or East Pacific. Due to the fact that such a value reaches the accuracy of modern data-constrained tidal models, we regard the impact of anelastic shear relaxation as significant in tidal modelling.

Details

show
hide
Language(s):
 Dates: 2021-08-212021
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1029/2021JB022332
GFZPOF: p4 T2 Ocean and Cryosphere
OATYPE: Hybrid - DEAL Wiley
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Geophysical Research: Solid Earth
Source Genre: Journal, SCI, Scopus
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 126 (9) Sequence Number: e2021JB022332 Start / End Page: - Identifier: ISSN: 2169-9313
ISSN: 2169-9356
CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/jgr_solid_earth
Publisher: American Geophysical Union (AGU)