Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Epistemic uncertainty of probabilistic building exposure compositions in scenario-based earthquake loss models

Gomez- Zapata, J. C., Pittore, M., Cotton, F., Lilienkamp, H., Shinde, S., Aguirre, P., Santa Maria, H. (2022): Epistemic uncertainty of probabilistic building exposure compositions in scenario-based earthquake loss models. - Bulletin of Earthquake Engineering, 20, 2401-2438.
https://doi.org/10.1007/s10518-021-01312-9

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
5009236.pdf (Verlagsversion), 6MB
Name:
5009236.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Gomez- Zapata, Juan Camilo1, Autor              
Pittore, Massimiliano1, Autor              
Cotton, Fabrice1, Autor              
Lilienkamp, Henning1, Autor              
Shinde, Simantini1, Autor              
Aguirre, Paula 2, Autor
Santa Maria, Hernán 2, Autor
Affiliations:
12.6 Seismic Hazard and Risk Dynamics, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146032              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Deal Springer
 Zusammenfassung: In seismic risk assessment, the sources of uncertainty associated with building exposure modelling have not received as much attention as other components related to hazard and vulnerability. Conventional practices such as assuming absolute portfolio compositions (i.e., proportions per building class) from expert-based assumptions over aggregated data crudely disregard the contribution of uncertainty of the exposure upon earthquake loss models. In this work, we introduce the concept that the degree of knowledge of a building stock can be described within a Bayesian probabilistic approach that integrates both expert-based prior distributions and data collection on individual buildings. We investigate the impact of the epistemic uncertainty in the portfolio composition on scenario-based earthquake loss models through an exposure-oriented logic tree arrangement based on synthetic building portfolios. For illustrative purposes, we consider the residential building stock of Valparaíso (Chile) subjected to seismic ground-shaking from one subduction earthquake. We have found that building class reconnaissance, either from prior assumptions by desktop studies with aggregated data (top–down approach), or from building-by-building data collection (bottom–up approach), plays a fundamental role in the statistical modelling of exposure. To model the vulnerability of such a heterogeneous building stock, we require that their associated set of structural fragility functions handle multiple spectral periods. Thereby, we also discuss the relevance and specific uncertainty upon generating either uncorrelated or spatially cross-correlated ground motion fields within this framework. We successively show how various epistemic uncertainties embedded within these probabilistic exposure models are differently propagated throughout the computed direct financial losses. This work calls for further efforts to redesign desktop exposure studies, while also highlighting the importance of exposure data collection with standardized and iterative approaches.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 20222022
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1007/s10518-021-01312-9
GFZPOF: p4 T3 Restless Earth
OATYPE: Hybrid - DEAL Springer Nature
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Bulletin of Earthquake Engineering
Genre der Quelle: Zeitschrift, SCI, Scopus
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 20 Artikelnummer: - Start- / Endseite: 2401 - 2438 Identifikator: ISSN: 1570-761X
ISSN: 1573-1456
CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals57
Publisher: Springer Nature