English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Numerical modeling of injection-induced earthquakes based on fully coupled thermo-poroelastic boundary element method

Sabah, M., Ameri, M. J., Hofmann, H., Ebrahimi, M. (2022): Numerical modeling of injection-induced earthquakes based on fully coupled thermo-poroelastic boundary element method. - Geothermics, 105, 102481.
https://doi.org/10.1016/j.geothermics.2022.102481

Item is

Files

show Files
hide Files
:
5012489.pdf (Postprint), 7MB
Name:
5012489.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Sabah, Mohammad1, Author
Ameri, Mohammad Javad1, Author
Hofmann, Hannes2, Author              
Ebrahimi, Mohammad1, Author
Affiliations:
1External Organizations, ou_persistent22              
24.8 Geoenergy, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146039              

Content

show
hide
Free keywords: -
 Abstract: In recent years, there has been a substantial increase in the induced seismicity associated with geothermal systems. However, understanding and modeling of injection-induced seismicity have still remained as a challenge. This paper presents a two-dimensional fully thermo-hydro-mechanical (THM) coupled boundary element approach to characterize the fault response to forced fluid injection and assess the effect of different injection protocols on seismic risk mitigation as well as permeability enhancement. The laboratory-derived rate-and-state friction law was used to capture the frictional paradigm observed in mature faults produced in granite rocks. All phases of stick-slip cycles, including aseismic slip, propagation of dynamic rupture, and interseismic periods, were simulated. The modeling results showed that the residual values of effective normal stress and static shear stress after a particular event completely dominate the constitutive behavior of fault friction during the next seismic event. The seismic energy analyses indicated that there is a negative correlation between the seismic magnitude and the total injected volume, such that a prolonged monotonic injection eventually results in the steady slip, rather than the seismic slip. Several fluid injection protocols were designed based on a volume-controlled (VC) approach and traffic light systems (TLS) to explore their effectiveness on the seismic risk mitigation and permeability enhancement. The results showed that cyclic injection based on TLS is the most effective approach for irreversible permeability enhancement of faults through promoting slow and steady slips. Our numerical simulations also revealed that fluid extraction (backflow-fixing bottom hole pressure at atmospheric pressure), regardless of the injection style, can considerably reduce the seismicity-related risks by preventing the fast-accelerated fracture slip during the post-injection stage. This study presents novel insights into modeling the rate-and-state governed faults exposed to forced fluid injection, and provides useful approaches for shear stimulation of faults with reduced seismic risks.

Details

show
hide
Language(s):
 Dates: 20222022
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1016/j.geothermics.2022.102481
GFZPOF: p4 T8 Georesources
OATYPE: Green Open Access
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Geothermics
Source Genre: Journal, SCI, Scopus
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 105 Sequence Number: 102481 Start / End Page: - Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals188
Publisher: Elsevier