English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Indicators of mantle control on the geodynamo from observations and simulations

Korte, M., Constable, C. G., Davies, C. J., Panovska, S. (2022): Indicators of mantle control on the geodynamo from observations and simulations. - Frontiers in Earth Science, 10, 957815.
https://doi.org/10.3389/feart.2022.957815

Item is

Files

show Files
hide Files
:
5013121.pdf (Publisher version), 7MB
Name:
5013121.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Korte, M.1, Author              
Constable, Catherine G.2, Author
Davies, Christopher J.2, Author
Panovska, Sanja1, Author              
Affiliations:
12.3 Geomagnetism, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146030              
2External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: There has been longstanding controversy about whether the influence of lateral variations in core-mantle boundary heat flow can be detected in paleomagnetic records of geomagnetic field behavior. Their signature is commonly sought in globally distributed records of virtual geomagnetic pole (VGP) paths that have been claimed to exhibit specific longitudinal preferences during polarity transitions and excursions. These preferences have often been linked to thermal effects from large low seismic velocity areas (LLVPs) in the lowermost mantle, but the results have been contested because of potential sensitivity to sparse temporal and spatial sampling. Recently developed time varying global paleofield models spanning various time intervals in 1–100 ka, three of which include excursions, allow us to complement assessments of spatial distributions of transitional VGP paths with distributions of minimum field intensity. Robustness of the results is evaluated using similar products from four distinct numerical dynamo simulations with and without variable thermal boundary conditions and including stable geomagnetic polarity, excursions and reversals. We determine that VGP distributions are less useful than minimum field intensity in linking the influences of thermal CMB structure to geographical variations in actual paleofield observables, because VGP correlations depend strongly on good spatial sampling of a sufficient number of relatively rare events. These results provide a basis for evaluating comparable observations from four paleofield models. The distribution of VGP locations provide unreliable results given the restricted time span and available data locations. Rough correlations of global distributions of minimum intensity with areas outside the LLVPs give some indications of mantle control during excursions, although the results for the eastern hemisphere are complex, perhaps highlighting uncertainties about the hemispheric balance between thermal and compositional variations in the lowermost mantle. However, access to other geomagnetic properties (such as intensity and radial field at the CMB) provides a strong argument for using extended and improved global paleofield models to resolve the question of mantle influence on the geodynamo from the observational side.

Details

show
hide
Language(s): eng - English
 Dates: 2022-08-302022
 Publication Status: Finally published
 Pages: 20
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.3389/feart.2022.957815
GFZPOF: p4 T3 Restless Earth
OATYPE: Gold Open Access
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : Gefördert im Rahmen des Förderprogramms "Open Access Publikationskosten" durch die Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 491075472".
Grant ID : -
Funding program : Open-Access-Publikationskosten (491075472)
Funding organization : Deutsche Forschungsgemeinschaft (DFG)

Source 1

show
hide
Title: Frontiers in Earth Science
Source Genre: Journal, SCI, Scopus, oa
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 10 Sequence Number: 957815 Start / End Page: - Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/140822
Publisher: Frontiers