English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Two-epoch centimeter-level PPP-RTK without external atmospheric corrections using best integer-equivariant estimation

Brack, A., Männel, B., Schuh, H. (2023): Two-epoch centimeter-level PPP-RTK without external atmospheric corrections using best integer-equivariant estimation. - GPS Solutions, 27, 12.
https://doi.org/10.1007/s10291-022-01341-0

Item is

Files

show Files
hide Files
:
5013465.pdf (Publisher version), 3MB
Name:
5013465.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Brack, A.1, Author              
Männel, B.1, Author              
Schuh, H.1, Author              
Affiliations:
11.1 Space Geodetic Techniques, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146025              

Content

show
hide
Free keywords: DEAL Springer Nature
 Abstract: Ambiguity resolution enabled precise point positioning (PPP-AR or PPP-RTK) without atmospheric corrections requires the user to estimate tropospheric and ionospheric delay parameters. The presence of the unconstrained ionosphere parameters impedes fast and reliable ambiguity resolution, so a time-to-first-fix of around 30 min for GPS-only solutions is generally reported, which can, to some extent, be reduced when combining multiple GNSS. In this contribution, we investigate the capabilities of almost instantaneous PPP-RTK, using only a few observation epochs at a sampling interval of 30 s, with the ionosphere-float model. The considered key elements are (a) the MSE-optimal best integer-equivariant estimator, (b) a combination of dual-frequency GPS, Galileo, BDS, and QZSS, (c) an area with good visibility of BDS and QZSS, and (d) a proper weighting of the PPP-RTK corrections. We provide a formal and simulation-based analysis of kinematic and static PPP-RTK with perfect, i.e., deterministic, clock and bias corrections as well as corrections computed from only a single reference station. The results indicate that, on average, one can expect centimeter-level positioning results with just slightly more than two epochs already with single-station corrections. This is confirmed with real four-system GNSS data, for which the availability of two-epoch centimeter-level horizontal positioning results is 99.7% during an exemplary day.

Details

show
hide
Language(s):
 Dates: 20222023
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1007/s10291-022-01341-0
OATYPE: Hybrid - DEAL Springer Nature
GFZPOF: p4 T3 Restless Earth
GFZPOFWEITERE: p4 MESI
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: GPS Solutions
Source Genre: Journal, SCI, Scopus
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 27 Sequence Number: 12 Start / End Page: - Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals196
Publisher: Springer Nature