English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Chapter 4: Data Analysis and Exploration with Computational Approaches

Wichert, V., Bouwer, L. M., Abraham, N., Brix, H., Callies, U., González Ávalos, E., Marien, L. C., Matthias, V., Michaelis, P., Rabe, D., Rechid, D., Ruhnke, R., Scharun, C., Valizadeh, M., Vlasenko, A., Graf zu Castell-Rüdenhausen, W. (2022): Chapter 4: Data Analysis and Exploration with Computational Approaches. - In: Bouwer, L. M., Dransch, D., Ruhnke, R., Rechid, D., Frickenhaus, S., Greinert, J. (Eds.), Integrating Data Science and Earth Science Challenges and Solutions, (SpringerBriefs in Earth System Sciences), Cham : Springer International Publishing, 29-54.
https://doi.org/10.1007/978-3-030-99546-1_4

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Wichert, Viktoria1, Author
Bouwer, Laurens M.1, Author
Abraham, Nicola1, Author
Brix, Holger1, Author
Callies, Ulrich1, Author
González Ávalos, Everardo1, Author
Marien, Lennart Christopher1, Author
Matthias, Volker1, Author
Michaelis, Patrick1, Author
Rabe, Daniela2, Author              
Rechid, Diana1, Author
Ruhnke, Roland1, Author
Scharun, Christian1, Author
Valizadeh, Mahyar1, Author
Vlasenko, Andrey1, Author
Graf zu Castell-Rüdenhausen, Wolfgang3, Author              
Affiliations:
1External Organizations, ou_persistent22              
21.4 Remote Sensing, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146028              
35.0 Geoinformation, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_1412889              

Content

show
hide
Free keywords: Machine learning; Artificial intelligence; Earth system; Data exploration
 Abstract: Artificial intelligence and machine learning (ML) methods are increasinglyappliedinEarthsystemresearch,forimprovingdataanalysis,andmodelperformance,andeventuallysystemunderstanding.IntheDigitalEarthproject,severalML approaches have been tested and applied, and are discussed in this chapter. These include data analysis using supervised learning and classification for detection of river levees and underwater ammunition; process estimation of methane emissions andforenvironmentalhealth;point-to-spaceextrapolationofvaryingobservedquantities; anomaly and event detection in spatial and temporal geoscientific datasets. We present the approaches and results, and finally, we provide some conclusions on the broad applications of these computational data exploration methods and approaches.

Details

show
hide
Language(s): eng - English
 Dates: 2022
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: GFZPOF: p4 T5 Future Landscapes
DOI: 10.1007/978-3-030-99546-1_4
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Integrating Data Science and Earth Science Challenges and Solutions
Source Genre: Book
 Creator(s):
Bouwer, Laurens M.1, Editor
Dransch, D.2, Editor            
Ruhnke, Roland1, Editor
Rechid, Diana1, Editor
Frickenhaus, Stephan1, Editor
Greinert, Jens1, Editor
Affiliations:
1 External Organizations, ou_persistent22            
2 1.4 Remote Sensing, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146028            
Publ. Info: Cham : Springer International Publishing
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 29 - 54 Identifier: -

Source 2

show
hide
Title: SpringerBriefs in Earth System Sciences
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -