English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Eruption Forecasting of Strokkur Geyser, Iceland, Using Permutation Entropy

Sudibyo, M. R. P., Eibl, E. P. S., Hainzl, S., Hersir, G. P. (2022): Eruption Forecasting of Strokkur Geyser, Iceland, Using Permutation Entropy. - Journal of Geophysical Research: Solid Earth, 127, 10, e2022JB024840.
https://doi.org/10.1029/2022JB024840

Item is

Files

show Files
hide Files
:
5014479.pdf (Publisher version), 5MB
Name:
5014479.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Sudibyo, Maria R. P.1, Author
Eibl, Eva P. S.1, Author
Hainzl, S.2, Author              
Hersir, Gylfi Páll1, Author
Affiliations:
1External Organizations, ou_persistent22              
22.1 Physics of Earthquakes and Volcanoes, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146029              

Content

show
hide
Free keywords: -
 Abstract: A volcanic eruption is usually preceded by seismic precursors, but their interpretation and use for forecasting the eruption onset time remain a challenge. A part of the eruptive processes in open conduits of volcanoes may be similar to those encountered in geysers. Since geysers erupt more often, they are useful sites for testing new forecasting methods. We tested the application of Permutation Entropy (PE) as a robust method to assess the complexity in seismic recordings of the Strokkur geyser, Iceland. Strokkur features several minute-long eruptive cycles, enabling us to verify in 63 recorded cycles whether PE behaves consistently from one eruption to the next one. We performed synthetic tests to understand the effect of different parameter settings in the PE calculation. Our application to Strokkur shows a distinct, repeating PE pattern consistent with previously identified phases in the eruptive cycle. We find a systematic increase in PE within the last 15 s before the eruption, indicating that an eruption will occur. We quantified the predictive power of PE, showing that PE performs better than seismic signal strength or quiescence when it comes to forecasting eruptions.

Details

show
hide
Language(s):
 Dates: 2022-102022
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1029/2022JB024840
GFZPOF: p4 T3 Restless Earth
OATYPE: Hybrid Open Access
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Geophysical Research: Solid Earth
Source Genre: Journal, SCI, Scopus
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 127 (10) Sequence Number: e2022JB024840 Start / End Page: - Identifier: ISSN: 2169-9313
ISSN: 2169-9356
CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/jgr_solid_earth
Publisher: American Geophysical Union (AGU)
Publisher: Wiley