English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Deriving debris-flow dynamics from real-time impact-force measurements

Yan, Y., Tang, H., Hu, K. H., Turowski, J., Wei, F.-q. (2023 online): Deriving debris-flow dynamics from real-time impact-force measurements. - Journal of Geophysical Research: Earth Surface.
https://doi.org/10.1029/2022JF006715

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Yan, Yan1, Author              
Tang, Hui2, Author              
Hu, K. H.3, Author
Turowski, J.1, Author              
Wei , Fang-qiang 3, Author
Affiliations:
14.6 Geomorphology, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146045              
24.7 Earth Surface Process Modelling, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_1729888              
3External Organizations, ou_persistent22              

Content

show
hide
Free keywords: DEAL Wiley
 Abstract: Understanding the impact forces exerted by debris flows is limited by a lack of direct field measurements and validated numerical models. In this study, we use real-time impact-force measurements and field observations of debris flows recorded by a sensor network in Jiangjia Ravine, China, to quantify the impact-force distribution of natural debris flows. We observed one debris flow event during and after a storm on August 25, 2004, including 42 short-duration surges and seven long-duration surges, and impact-force signals were successfully recorded for 38 surges. Our observed debris flows comprise high-viscosity laminar flows with high sediment concentration and frequent solid-to-solid interactions. We identified a large magnitude (up to 1 kN), high-frequency (greater than 1 Hz) fluctuating component of the impact force that we interpret as solid particle impact on the sensors. The variability of particle impact forces increases with the mean impact force. Our results show that a log-logistic distribution can describe the probability density distribution of impact forces. Solid-dominated surges and fluid-dominated intersurge flows have similar impact-force distributions, but surges usually have heavy tails. We created a dimensionless number to describe the impact force and correlated it against existing dimensionless parameters. Finally, we develop a simple particle impact model to understand the relationship between flow dynamics and the impact force inside debris flows that could be applied to improve debris-flow flume experiments and design debris-flow hazard mitigation measures.

Details

show
hide
Language(s):
 Dates: 2023
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1029/2022JF006715
OATYPE: Hybrid - DEAL Wiley
GFZPOF: p4 T3 Restless Earth
GFZPOFWEITERE: p4 T5 Future Landscapes
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Geophysical Research: Earth Surface
Source Genre: Journal, SCI, Scopus
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: ISSN: 2169-9003
ISSN: 2169-9011
CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/jgr_earth_surface
Publisher: American Geophysical Union (AGU)
Publisher: Wiley