English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Hysteresis of idealized marine outlet glaciers under variation of pinning-point buttressing

Feldmann, J., Winkelmann, R., Levermann, A. (2023): Hysteresis of idealized marine outlet glaciers under variation of pinning-point buttressing, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-0358

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Feldmann, Johannes1, Author
Winkelmann, Ricarda1, Author
Levermann, Anders1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: Ice-shelf pinning points such as ice rises or ice rumples can have an important role in regulating the ice discharge of marine outlet glaciers. For instance, the observed gradual ungrounding of the ice shelf of West Antarctica's Thwaites Glacier from its last pinning points diminishes the buttressing effect of the ice shelf and thus contributes to the destabilization of the outlet. Here we use an idealized experimental setting to simulate the response of an Antarctic-type marine outlet glacier to a successive ungrounding of its ice shelf from a pinning point. This is realized by perturbing steady states by a step-wise lowering of the pinning point, which induces a buttressing reduction. After the complete detachment of the ice shelf from the pinning point the perturbation is reversed, i.e., the pinnning point is incrementally elevated toward its initial elevation. First results show that the glacier retreat down the landward down-sloping (retrograde) bed, induced by the loss in buttressing, can be reversible in case of a relatively flat retrograde bed slope. For steeper slopes, glacier retreat and re-advance show a hysteretic behavior. Thus, if the bed depression is sufficiently deep, the glacier does not recover from its fully retreated state even for pinning-point elevations that are higher than the initial elevation.

Details

show
hide
Language(s): eng - English
 Dates: 2023
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-0358
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -