English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Advances in cold atom interferometer accelerometry and their impact on the sensitivity of gravity missions

HosseiniArani, A., Schilling, M., Beaufils, Q., Knabe, A., Tennstedt, B., Schön, S., Pereira dos Santos, F., Müller, J. (2023): Advances in cold atom interferometer accelerometry and their impact on the sensitivity of gravity missions, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-0743

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
HosseiniArani, Alireza1, Author
Schilling, Manuel1, Author
Beaufils, Quentin1, Author
Knabe, Annike1, Author
Tennstedt, Benjamin1, Author
Schön, Steffen1, Author
Pereira dos Santos, Franck1, Author
Müller, Jürgen1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: Cold Atom Interferometer (CAI) accelerometry is proposed for future generations of satellite gravimetry missions. The technique can achieve high sensitivity and provide long-term stability and precise measurements of the non-gravitational accelerations acting on the satellites. This would reduce the overall instrumental errors and improve the observation of the Earth's gravity field and its change over time and enable a better understanding of several geophysical phenomena, also related to climate change. The current CAI accelerometers have shown great performance, especially in the lower frequencies. They have been able to considerably reduce the bias which is usually seen in the measurements of conventional electrostatic accelerometers. However, noise sources such as satellite rotation can degrade the CAI solution if they are not carefully compensated. In this study, we model the most impactful error sources which perturb the measurements of a CAI accelerometer onboard a GRACE-like satellite. We further investigate the sensitivity of the instrument to the various error sources, including detection noise, aberrations of laser wavefront, contrast loss due to the Coriolis acceleration and laser intensity inhomogeneity. We also consider the potential improvements which can be expected for satellite-based CAI accelerometers in the near and far future (e.g. longer interrogation time, rotation compensation in different scenarios, and increasing the laser waist). Additionally, we study their potential benefit for future satellite missions and the retrieval of the Earth’s gravity field.

Details

show
hide
Language(s): eng - English
 Dates: 2023
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-0743
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -