English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Beamforming of Rayleigh and Love Waves in the Course of Atlantic Cyclones

Pelaez Quiñones, J. D., Becker, D., Hadziioannou, C. (2023): Beamforming of Rayleigh and Love Waves in the Course of Atlantic Cyclones. - Journal of Geophysical Research: Solid Earth, 128, 2, e2022JB025050.
https://doi.org/10.1029/2022JB025050

Item is

Files

show Files
hide Files
:
5017506.pdf (Publisher version), 6MB
Name:
5017506.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Pelaez Quiñones, J. D.1, Author
Becker, Dirk2, Author              
Hadziioannou, C.1, Author
Affiliations:
1External Organizations, ou_persistent22              
24.2 Geomechanics and Scientific Drilling, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146035              

Content

show
hide
Free keywords: -
 Abstract: The main sources of the ambient seismic wavefield in the microseismic frequency band (peaking in the ∼0.04–0.5 Hz range) are earth's oceans, namely the wind-driven surface gravity waves (SGW) that couple oscillations into the seafloor and the upper crust underneath. Cyclones (e.g., hurricanes, typhoons) and other atmospheric storms are efficient generators of high ocean waves that in turn generate distinct microseismic signatures. In this study, we perform a polarization (i.e., three-component) beamforming analysis of microseismic (0.05–0.16 Hz) retrograde Rayleigh and Love waves during major Atlantic hurricanes using a virtual array of seismometers in Eastern Canada. Oceanic hindcasts and meteorological data are used for comparison. No continuous generation of microseism along the hurricane track is observed but rather an intermittent signal generation. Both seismic surface wave types show clear cyclone-related microseismic signatures that are consistent with a colocated generation at near-coastal or shallow regions, however the Love wavefield is comparatively less coherent. We identify two different kinds of intermittent signals: (a) azimuthally progressive signals that originate with a nearly constant spatial lag pointing toward the trail of the hurricanes and (b) azimuthally steady signals remaining nearly constant in direction of arrival even days after the hurricane significantly changed its azimuth. This high complexity highlights the need for further studies to unravel the interplay between site-dependent geophysical parameters, SGW forcing at depth and microseismic wavefield radiation and propagation, as well as the potential use of cyclone microseisms as passive natural sources.

Details

show
hide
Language(s):
 Dates: 2023-02-212023
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1029/2022JB025050
GFZPOF: p4 T3 Restless Earth
OATYPE: Hybrid Open Access
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Geophysical Research: Solid Earth
Source Genre: Journal, SCI, Scopus
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 128 (2) Sequence Number: e2022JB025050 Start / End Page: - Identifier: ISSN: 2169-9313
ISSN: 2169-9356
CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/jgr_solid_earth
Publisher: American Geophysical Union (AGU)
Publisher: Wiley