English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Atlantic meridional overturning circulation increases flood risk along the United States southeast coast

Volkov, D., Zhang, K., Johns, W., Willis, J., Hobbs, W., Goes, M., Zhang, H., Menemenlis, D. (2023): Atlantic meridional overturning circulation increases flood risk along the United States southeast coast, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-1944

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Volkov, Denis1, Author
Zhang, Kate1, Author
Johns, William1, Author
Willis, Joshua1, Author
Hobbs, Will1, Author
Goes, Marlos1, Author
Zhang, Hong1, Author
Menemenlis, Dimitris1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: The system of oceanic flows constituting the Atlantic Meridional Overturning Circulation (AMOC) moves heat and other properties to the subpolar North Atlantic, controlling regional climate, weather, sea levels, and ecosystems. Climate models suggest a potential AMOC slowdown towards the end of the 21st century due to anthropogenic forcing, which would accelerate coastal sea level rise along the western boundary and dramatically increase coastal flood risk. While the slowdown has not been observed to date, we show here that the AMOC-induced intrinsic changes in gyre-scale heat content, superimposed on the global mean sea level rise, are already influencing the frequency of floods along the United States southeastern seaboard. For the South Atlantic Bight and Gulf of Mexico coasts, using observations and an ocean state estimate, we have established a strong link between coastal sea level, the associated flood frequency, and gyre-scale dynamic sea level and oceanic heat content variability, which are largely controlled by AMOC-driven ocean heat convergence. We find that ocean heat convergence, being the primary driver for interannual sea level changes in the subtropical North Atlantic, has led to an exceptional gyre-scale warming and associated dynamic sea level rise since 2010, accounting for 30-50% of flood days in 2015-2020. The results of this study highlight the importance of accounting for natural, large-scale sea level variability in order to improve coastal sea level projections and to better assess coastal flood risk.

Details

show
hide
Language(s): eng - English
 Dates: 2023
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-1944
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -