English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Improved prediction skill of extremely warm European summers by using sub-decadal North Atlantic heat inertia

Hellmich, L., Matei, D., Suarez-Gutierrez, L., Müller, W. (2023): Improved prediction skill of extremely warm European summers by using sub-decadal North Atlantic heat inertia, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-1862

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Hellmich, Lara1, Author
Matei, Daniela1, Author
Suarez-Gutierrez, Laura1, Author
Müller, Wolfgang1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: The frequency of occurrence of extreme weather events, such as heat waves, severe storms, and extreme precipitation has increased dramatically in recent years and is expected to further increase with rising global temperatures. Extreme weather events and their changing characteristic due to rising global temperatures have a large societal impact. Exemplary, extremely warm summers can lead to severe health problems and are thus associated with an increased mortality. Furthermore, economic impacts, such as crop failure and water shortage, and political aspects, such as climate migration and general crisis management are associated with extremely warm summers. Reliable and precise predictability years in advance of these high-impact events would be crucial to reduce potential impacts. <br>We use the demonstrated processes connecting the North Atlantic circulation and European temperatures (Hellmich et al., in review) to enhance the prediction skill of extremely warm European summers. The North Atlantic heat inertia can drive extremely warm European summers on sub-decadal time scales, thus acting as a precursor for the occurrence of such extreme events. Here we demonstrate how the sub-decadal North Atlantic heat inertia can be used to predict extremely warm European summers several years in advance, using a decadal hindcast ensemble based on the Max-Planck-Institute Earth system model.

Details

show
hide
Language(s): eng - English
 Dates: 2023
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-1862
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -