English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Real-Time GNSS Integrated Water Vapor sensing based on time series correction Deep Learning model

Wang, D., Yuan, P., Kutterer, H. (2023): Real-Time GNSS Integrated Water Vapor sensing based on time series correction Deep Learning model, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-1853

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Wang, Duo1, Author
Yuan, Peng1, Author
Kutterer, Hansjörg1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: <!--!introduction!--><b></b><div id="haloword-lookup"><p>In the past three decades, ground-based Global Navigation Satellite System (GNSS) has been used to retrieve atmospheric Integrated Water Vapor (IWV). It shows unique advantages in severe weather event monitoring such as, e.g., its all-weather availability. <p>Traditionally, real-time GNSS IWV sensing using the analytical physical model needs to obtain meteorological data at the location of the observation station, such as surface pressure and atmospheric weighted mean temperature. However, real-time acquisition of the collocated meteorological observations is a very challenging task for most GNSS stations. Although empirical models such as <em>Global Pressure and Temperature 3</em> (GPT3) can provide meteorological estimates, their accuracies are limited. In particular, it is found that the GPT3 prediction errors can be time-series correlated in specific regions (e.g., Central and Northern Europe). <p>In view of the above problems, this study implements a PWV inversion model based on deep learning Long Short-Term Memory (LSTM) network, which realizes real-time GNSS IWV sensing without the actual need for meteorological data. Results show that the Root Mean Square Errors (RMSEs) of the prediction residuals of the developed model are significantly lower than those from GPT3, especially in Central and Northern Europe. The seasonal patterns of the prediction residuals are also mitigated. The developed model provides a broad application prospect for real-time GNSS IWV sensing without meteorological data.</div>

Details

show
hide
Language(s): eng - English
 Dates: 2023
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-1853
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -