English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Radiative impact of thin cirrus clouds in the tropopause and lowermost stratosphere region

Spang, R., Müller, R., Rap, A. (2023): Radiative impact of thin cirrus clouds in the tropopause and lowermost stratosphere region, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-1817

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Spang, Reinhold1, Author
Müller, Rolf1, Author
Rap, Alexandru1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: Cirrus clouds play an important role in the radiation budget of the Earth. Despite recent progress in remote sensing observations of cirrus in general, the radiative impact of thin cirrus clouds in the tropopause and lowermost stratosphere remains poorly constrained. This is due to their small vertical extent and optical depth, which make them very difficult to observe for most instruments. In addition, their shortwave (cooling) and longwave (warming) radiative effects (RE) are often just in balance, which together with existing uncertainties regarding their shape and size, make their overall effect difficult to quantify. In this study the SOCRATES radiative transfer model was used to calculate the shortwave and longwave RE for observed thin cirrus from CRISTA2 infrared limb sounder measurements. Using sensitivity simulations with different ice particle sizes and shapes, we provide an uncertainty range for their RE during both summer and winter months. Cloud top height and ice water content are based on CRISTA2 retrievals, while the cloud vertical thicknesses were assumed to be 0.5 or 2 km. Our results indicate that if the ice crystals of these thin cirrus clouds are assumed to be spherical, then their net RE is generally positive (warming). In contrast, if they are assumed to be aggregates, then their net RE is generally negative (cooling) during summer months and positive (warming) during winter months.

Details

show
hide
Language(s): eng - English
 Dates: 2023
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-1817
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -