English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Multi-centennial modulation of Atlantic multi-decadal variability in a 2000-year climate integration

Kjellsson, J., Park, W. (2023): Multi-centennial modulation of Atlantic multi-decadal variability in a 2000-year climate integration, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-1746

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Kjellsson, Joakim1, Author
Park, Wonsun1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: We explore the amplitude and frequency of Atlantic Multi-decadal Variability (AMV) in a 2,000-year pre-industrial control simulation with the FOCI-OpenIFS coupled climate model. We find a statistically significant AMV-like mode on the 20-year and 80-year time scales. We also find a mode of multi-centennial variability where the North Atlantic Ocean shifts a regime of a warm period to/from a cold period of ~400 years. The warm period is characterised by mean states of a stronger and deeper Atlantic Meridional Overturning Circulation (AMOC), less Arctic sea ice, and more deep convection in the Labrador Sea than the cold period. We find that the AMV has a much higher amplitude in the cold period compared to the warm period, and also that the lead-lag relationship between the AMOC and the AMV is different between the two periods. In the warm period, AMOC leads the AMV; a strong AMOC enhances the oceanic poleward heat transport which warms the North Atlantic Ocean both at the surface and deeper down, producing a positive AMV. In the cold period, however, AMV leads AMOC; a warm surface anomaly reduces the sea ice in the Labrador Sea which enhances local air-sea interactions and deep convection, and later a stronger AMOC. In the cold period, the warm anomaly associated with the AMV does not extend below the mixed layer, suggesting that it is driven by the atmosphere and not ocean dynamics.

Details

show
hide
Language(s): eng - English
 Dates: 2023
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-1746
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -