English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Projected changes to wintertime air-sea turbulent heat fluxes over the subpolar North Atlantic Ocean

Barrell, C., Renfrew, I., King, J., Abel, S., Elvidge, A. (2023): Projected changes to wintertime air-sea turbulent heat fluxes over the subpolar North Atlantic Ocean, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-1611

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Barrell, Christopher1, Author
Renfrew, Ian1, Author
King, John1, Author
Abel, Steven1, Author
Elvidge, Andrew1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: In wintertime over the subpolar North Atlantic Ocean (SPNA), the strongest surface sensible and latent heat fluxes typically occur just downstream of the ice edge. The recent retreat in Arctic wintertime sea ice is changing the distribution of these turbulent heat fluxes, with consequences for the formation of the dense waters that feed into the Atlantic Meridional Overturning Circulation. Projections of turbulent heat flux over the SPNA are investigated using output from the HadGEM3-GC3.1 climate model, produced as part of the 6th phase of the Coupled Model Inter-Comparison Project. Comparison of two model resolutions (MM: 60 km atmosphere - 1/4° ocean and HH: 25 km – 1/12°) shows that the HH configuration more accurately simulates historic sea ice and turbulent heat flux distributions. The MM configuration tends to produce too much sea ice in the SPNA, affecting the turbulent heat flux distribution; however, it displays improved performance during winters with less sea ice, increasing confidence in future projections when less sea ice is predicted. Future projections are presented for low (SSP1-2.6) and high (SSP5-8.5) emissions pathways. The simulations agree in predicting that with climate change the SPNA will see significant reductions in wintertime sea ice and air-sea turbulent fluxes later in the 21st century, particularly in the Labrador and Irminger Seas and the interior of the Nordic Seas, and a notable reduction in their decadal variability. These effects are more severe under the SSP5-8.5 pathway. The implications for SPNA ocean circulation are discussed.

Details

show
hide
Language(s): eng - English
 Dates: 2023
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-1611
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -