Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Developing probabilistic long-term forecasts using statistical postprocessing methods for the German waterways

Frielingsdorf, B., Meissner, D., Klein, B. (2023): Developing probabilistic long-term forecasts using statistical postprocessing methods for the German waterways, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-1557

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Frielingsdorf, Barbara1, Autor
Meissner, Dennis1, Autor
Klein, Bastian1, Autor
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Many sectors, such as hydropower, agriculture, water supply and waterway transport, require information about the possible evolution of meteorological and hydrological conditions within the next weeks and months to optimize their decision-making processes on a long term. Since July 2022, the German Federal Institute of Hydrology (BfG) is providing operational 6-week forecasts for selected gauges at river Rhine and Elbe on the monthly timescale. Due to ongoing research, this forecast for the upper Danube is published in a pre-operational state. Taking the increasing uncertainties with longer lead times into account, user communication and a proper postprocessing is the key to a useful forecast. Hindcast analysis shows, that the forecast has skill at least for the first three weeks during the whole year, even without advanced postprocessing or data assimilation. Recently in addition to an autoregressive and wavelet-based output correction, a postprocessing method called EMOS (ensemble model output statistics) (Gneiting et al., 2005 and Hemri & Klein, 2017) has been implemented to further improve the forecast skill. The results show significant differences between a non-postprocessed and a postprocessed hydrological 6-week forecast. There are also differences in forecast skill depending on the postprocessing method and between the analyzed rivers Rhein, Elbe and Danube, due to their catchment attributes. References Gneiting, Raftery, Westveld, Goldman (2005): Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation, Monthly Weather Review 133(5), 1098-1118 Hemri, Klein (2017): Analog-Based Postprocessing of Navigation-Related Hydrological Ensemble Forecasts, Water Resources Research 53(11), 9059-9077

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2023
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.57757/IUGG23-1557
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Veranstaltungsort: Berlin
Start-/Enddatum: 2023-07-11 - 2023-07-20

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Potsdam : GFZ German Research Centre for Geosciences
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: -