English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Mesoscale polar cap flow channels: Initial evaluation of long duration Propagation and effects on space weather disturbances

Lyons, L., Nishimura, Y., Liu, J., Zou, Y., Bristow, W., Yadav, S., Donovan, E., Nishitani, N., Shiokawa, K., Hosokawa, K. (2023): Mesoscale polar cap flow channels: Initial evaluation of long duration Propagation and effects on space weather disturbances, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-1128

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Lyons, Larry1, Author
Nishimura, Yukitoshi1, Author
Liu, Jiang1, Author
Zou, Ying1, Author
Bristow, William1, Author
Yadav, Sneha1, Author
Donovan, Eric1, Author
Nishitani, Nozomu1, Author
Shiokawa, Kazuo1, Author
Hosokawa, Keisuke1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: Dynamic mesoscale flow channels move across the open field line regions of the polar caps, and then enter the nightside plasma sheet, where they can lead to important space weather disturbances, such as streamers, substorms, and omega bands. We find that the polar cap structures leading to disturbances can have long durations (at least ~1½ to 2 hours), and one flow structure can lead to more than one disturbance as it moves azimuthally within the polar cap. Examples using 630 nm auroral and radar observations indicate that the motion of flow channels within the polar cap may be significantly controlled by the IMF By. This motion appears to possibly be a critical factor in determining when and where a particular disturbance within the nightside auroral oval will be triggered. Also, potentially important is the occasional dramatic azimuthal turning of a flow channel, leading to azimuthal broadening of flow channel contact with the auroral oval and of a subsequent substorm onset. Of additional importance for future understanding of disturbances resulting from polar cap flow channels will be determining conditions along nightside auroral oval field lines (plasma sheet) that interact with an incoming flow polar-cap flow channel to give a particular disturbance. Additionally interesting will be consideration of the generality of geomagnetic disturbances being related to their connections with incoming polar cap flow channels, including the location, time, and type of disturbances, and also whether the duration of the disturbances appears to be related to the duration of an incoming flow channel.

Details

show
hide
Language(s): eng - English
 Dates: 2023
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-1128
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -