English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  The Community Stress-Drop Validation Study—Part II: Uncertainties of the Source Parameters and Stress Drop Analysis

Bindi, D., Spallarossa, D., Picozzi, M., Oth, A., Morasca, P., Mayeda, K. (2023 online): The Community Stress-Drop Validation Study—Part II: Uncertainties of the Source Parameters and Stress Drop Analysis. - Seismological Research Letters.
https://doi.org/10.1785/0220230020

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Bindi, Dino1, Author              
Spallarossa, Daniele2, Author
Picozzi, Matteo2, Author
Oth, Adrien2, Author
Morasca, Paola2, Author
Mayeda, Kevin2, Author
Affiliations:
12.6 Seismic Hazard and Risk Dynamics, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146032              
2External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: As part of the community stress-drop validation study, we evaluate the uncertainties of seismic moment M0 and corner frequency fc for earthquakes of the 2019 Ridgecrest sequence. Source spectra were obtained in the companion article by applying the spectral decomposition approach with alternative processing and model assumptions. The objective of the present study is twofold: first, to quantify the impact of different assumptions on the source parameters; and second, to use the distribution of values obtained with different assumptions to estimate an epistemic contribution to the uncertainties. Regarding the first objective, we find that the choice of the attenuation model has a strong impact on fc results: by introducing a depth-dependent attenuation model, fc estimates of events shallower than 6 km increase of about 10%. Also, the duration of the window used to compute the Fourier spectra show an impact on fc: the average ratio between the estimates for 20 s duration to those for 5 s decreases from 1.1 for Mw < 3 to 0.66 for Mw > 4:5. For the second objective, we use a mixed-effect regression to partition the intraevent variability into duration, propagation, and site contributions. The standard deviation ϕ of the intraevent residuals for log fc is 0.0635, corresponding to a corner frequency ratio 102ϕ  1:33. When the intraevent variability is compared to uncertainties on log fc, we observe that 2ϕ is generally larger than the 95% confidence interval of log fc, suggesting that the uncertainty of the source parameters provided by the fitting procedure might underestimate the model-related (epistemic) uncertainty. Finally, although we observe an increase of log Δσ with log M0 regardless of the model assumptions, the increase of Δσ with depth depends on the assumptions, and no significant trends are detected when depth-dependent attenuation and velocity values are considered.

Details

show
hide
Language(s): eng - English
 Dates: 2023-05-23
 Publication Status: Published online
 Pages: 11
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1785/0220230020
GFZPOF: p4 T3 Restless Earth
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Seismological Research Letters
Source Genre: Journal, SCI, Scopus
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals447
Publisher: Seismological Society of America (SSA)