English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Australia’s ACCESS-CM2 climate model with a higher-resolution ocean-sea ice component (1/4°)

Huneke, W., Hogg, A., Dix, M., Bi, D. (2023): Australia’s ACCESS-CM2 climate model with a higher-resolution ocean-sea ice component (1/4°), XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-2196

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Huneke, Wilma1, Author
Hogg, Andy1, Author
Dix, Martin1, Author
Bi, Dave1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: Global coupled ocean-atmosphere models are a valuable tool to study climate variability and to project future changes. Many of the present global coupled models have an ocean component with a low horizontal resolution that does not permit ocean mesoscale eddies. The ocean mesoscale is not only important for the ocean dynamics but can also have an imprint on the atmosphere. Increasing the horizontal resolution of the ocean model component is therefore crucial to improve simulations of the coupled climate system. In this study, a newly developed version of Australia’s ACCESS-CM2 climate model with a higher-resolution ocean-sea ice component (1/4°) is evaluated under present climate conditions against (i) the previous coarser (1°) version and (ii) against the ocean-only counterparts of the ACCESS-OM2 ocean-sea ice model suite. The 1/4° ACCESS-CM2 overall improves the ocean state compared to the 1° version but inhibits a large decadal variability in the upper ocean heat content that is not seen in any of the other models. The signal originates in the North Atlantic, can be traced to the Southern Hemisphere and dominates the global mean. Another notable aspect of the 1/4° ACCESS-CM2 is the large Drake Passage transport, a metric that many models do not simulate accurately, and which is underestimated in the ACCESS-OM2 models but represented reasonably well in the 1° ACCESS-CM2 version compared to observations.

Details

show
hide
Language(s): eng - English
 Dates: 2023
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-2196
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -