Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

EndNote (UTF-8)
 
DownloadE-Mail
  Making GeoNet Data FAIRer: lessons learnt from scoring a variety of natural hazard datasets (and how to improve them)

Hanson, J., Sherburn, S., D'Anastasio, E., Madley, M., Rattenbury, M., Mavroeidi, M., Christophersen, A., Team, G. P. (2023): Making GeoNet Data FAIRer: lessons learnt from scoring a variety of natural hazard datasets (and how to improve them), XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-2199

Item is

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Hanson, Jonathan1, Autor
Sherburn, Steve1, Autor
D'Anastasio, Elisabetta1, Autor
Madley, Megan1, Autor
Rattenbury, Mark1, Autor
Mavroeidi, Maria1, Autor
Christophersen, Annemarie1, Autor
Team, GeoNet Programme1, Autor
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: The GeoNet programme at GNS Science, Aotearoa New Zealand is producer and custodian for datasets used for multi-hazard monitoring, assessment, and research. These datasets are of high national value and significance and range from highly sampled/highly automated to manual and ad-hoc datasets. FAIR is a cornerstone of GeoNet’s and GNS Sciences’ data principles and an area where we are always seeking to improve. To understand and demonstrate improvements FAIRness of its datasets, all GeoNet datasets were assessed in 2019. Here we will discuss that scoring effort and the outcomes across our datasets, and show how subsequent targeted work has delivered improvements, using a few key examples: - Our eruption history database was converted from unstructured document format (GNS report) to a csv format and made fully public; this significantly enhanced its FAIR score across the board. - Our acoustic/infrasound dataset was made more discoverable by minting a DOI, creating a dataset description record that is based on international web standards and utilising community webservices, leading to significant increases in Findability and Interoperability. FAIRness scoring is a powerful tool to guide dataset management improvements. It also revealed that some datasets have natural ceilings, particularly when there is a lack of clear international or community standards. More established and cross-peril datasets can achieve high compliance with FAIR data principles with relatively simple steps, while some key improvements generate nary a ripple in the score. FAIRness and open data are key policies for GeoNet, and will remain so for the foreseeable future.

Details

ausblenden:
Sprache(n): eng - Englisch
 Datum: 2023
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.57757/IUGG23-2199
 Art des Abschluß: -

Veranstaltung

ausblenden:
Titel: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Veranstaltungsort: Berlin
Start-/Enddatum: 2023-07-11 - 2023-07-20

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Potsdam : GFZ German Research Centre for Geosciences
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: -