English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Quantifying uncertainty in simulations of the West African Monsoon with the use of surrogate models

Fischer, M., Knippertz, P., van der Linden, R., Lemburg, A., Pante, G., Proppe, C., Marsham, J. H. (2023): Quantifying uncertainty in simulations of the West African Monsoon with the use of surrogate models, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-2034

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Fischer, Matthias1, Author
Knippertz, Peter1, Author
van der Linden, Roderick1, Author
Lemburg, Alexander1, Author
Pante, Gregor1, Author
Proppe, Carsten1, Author
Marsham, John H.1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: Simulating the West African monsoon (WAM) system using numerical weather and climate models suffers from large uncertainties, which are difficult to disentangle due to highly non-linear interactions between different components of the WAM. We propose a new approach to this problem by emulating a full-blown numerical model, the ICON model of the German Weather Service, through statistical surrogate models. The ICON model was run during the rainy seasons in four years in a nested limited-area mode. The uncertainty contributions of six selected model parameters were investigated. To this end, we employed a sampling strategy to obtain model parameter combinations for a manageable number of ICON model runs. Surrogate models were then constructed to describe a relationship between the model parameters and selected Quantities of Interest (e.g. characteristics of the African and Tropical easterly jets or the Saharan heat low) to employ sensitivity and parameter studies. For better interpretation a local parameter analysis based on the output fields was conducted using the same setup. Results reveal the complex nature of the WAM system and indicate for which parameters (and thus processes) uncertainties need to be reduced to lower the spread in the outputs. Among the considered parameters, the entrainment rate and the terminal fall velocity of ice show the greatest effects, where larger values lead to a decrease of cloud cover and precipitation, and to an intensification of the Saharan heat low, despite distinct regional differences. The evaporative soil surface also shows a significant effect, mostly on temperature and cloud cover.

Details

show
hide
Language(s): eng - English
 Dates: 2023
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-2034
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -